
Revista de Ciências da Computação, 2017, Número Especial Videojogos

45

MiniPool: Real-time artificial player for an 8-Ball video game

David Silva, Rui Prada

INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, david.silva@tecnico.ulisboa.pt
INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, rui.prada@tecnico.ulisboa.pt

Abstract
Games like 8-Ball offer many interesting challenges for both AI and optimization
communities because of the continuous and stochastic characteristics of the domain. To
succeed, a player must be able to plan the best sequence of shots and execute them with
accuracy and precision, so that he does not lose the turn. The artificial players developed to
date tend to take more than 30 seconds to select and execute a shot. Under a videogame
setting, a player would give up playing the game if he had to wait that long for his turn. To
solve this problem, we propose a real-time solution using a Monte-Carlo and Expectimax
hybrid search algorithm with ray tracing techniques.

Keywords: Artificial Player; Billiards; 8-Ball; Stochastic Game; Video Game; Real-time

Título: MiniPool: Jogador artificial em tempo real para o videojogo 8-Ball

Resumo
Jogos como 8-Ball oferecem muitos desafios interessantes para ambas as comunidades de
IA e otimização devido às características contínuas e estocásticas do domínio. Para ter
sucesso, um jogador deve ser capaz de planear a melhor sequência de tacadas e executá-las
com pontaria e precisão, para que não perca o turno. Os jogadores artificiais desenvolvidos
até hoje tendem a demorar mais de 30 segundos a selecionar e executar uma tacada. No
cenário de um videojogo, um jogador desistiria de joga-lo se tivesse que esperar tanto
tempo pela sua vez. Para resolver este problema, propomos uma solução em tempo real
utilizando um algoritmo de pesquisa híbrido de Monte-Carlo e Expectimax com técnicas de
rastreamento de raios.

Palavras-chave: Jogador Artificial; Bilhar; 8-Ball; Jogos Estocásticos; Videojogo; Tempo
real

Revista de Ciências da Computação, 2017, Número Especial Videojogos

46

1. Introduction

Artificial players for 8-Ball games have been a topic of investigation due to interesting
aspects that cannot be solved using the traditional methods of the classic games [Bahr,
2012). Having a continuous and stochastic domain makes it possible to have an infinite
number of states and actions. It is also difficult to predict the resulting state of an action due
to perturbations on the environment that cannot be controlled by the player (t is very
unlikely that two shots with the same parameters lead to the same resulting states).

In the last years a competition called Pool Computer Olympiads has been taking place. In
this competition participants had to develop an artificial billiards player and compete with
each other. All these artificial players, which will be mentioned later in Section Related
Work, focus on different aspects of the game and explore different points of view to
overcome the design challenges found in 8-Ball.

One possible application of the state of the art in computer billiards is video games. The
games industry has been growing over the years. According to the Entertainment Software
Association statistics in 2014, 155 million Americans play video games. Developing
artificial intelligence for games brings other interesting challenges such as dealing with
limited resources, providing a response in real time and balancing the skills. A professional
pool player needs to have a good planning and understanding of the table state to make the
best decision. For the artificial player to be able to do this and compete with the best human
pool players, it will need the tools to plan the best sequence of shots, support a large variety
of shot patterns, mechanisms to evaluate and find good reposition zones for the cue ball and
methods to optimize the shot parameters under stochastic environments. The artificial
players already developed for 8-Ball tend to take more than 30 seconds to plan the best shot
to be executed. This delay on the response would probably make most players give up
playing the game. In the context of this kind of games, players are expecting a real time
response from the opponent.

The main focus of this work is to develop a real-time 8-Ball player capable of competing
with the best players while having a good balance between skill and resources used. The
paper here presented is a slightly extended version of the one that appeared in the
Videojogos 2016 proceedings. The rest of this document is structured as follows: first, in
Section Background, we present a short background of 8-Ball and an overview of the
characteristics of the game where the proposed solution will be tested. In Section Related
Work, we introduce and discuss some of the related work already done. In Section
Solution, we give an overview of the proposed solution as well as some explanation of the
key elements of MiniPool. The Section Results contains all the experimental results and
analysis of the individual contributions of each component of Minipool. Finally, in Section
Conclusion, there is an overall discussion and future work.

Revista de Ciências da Computação, 2017, Número Especial Videojogos

47

2. Background

To provide a general idea of the challenges present in the 8-Ball game, we will describe the
general rules used in the game, as well as the shot parameters and the most common shot
patterns used by professional players.

2.1. 8-Ball Rules
8-Ball belongs to the Pool-Billiards games family. It is a turn-based game played by two
players on a rectangular pool table with 6 pockets and 16 balls (7 solid, 7 striped, the 8 ball
and the cue ball). The game begins with a player striking the cue ball anywhere behind the
headstring (line with a semi-circle, illustrated in Figure 1) towards the cluster of the rest of
the balls (called break shot).

Figure 1. Initial pool table layout

A player can only strike the cue ball and only using the cue stick. To pocket a ball, the
player can try to hit the object ball directly with the cue ball, hoping that the velocity gain
from the collision is enough to make the object ball enter a pocket, or using collisions with
other balls or rails to reach that object ball. The first ball to enter a pocket determines which
ball type (solid or striped) the player needs to seek, having the opponent to seek the
remaining type. The cue ball needs to hit a ball when stroked and that ball has to be of the
type that the current player is seeking, otherwise the player is committing a foul. A foul also
occurs when the cue ball enters a pocket.

When a ball enters a pocket legally, the player keeps the turn and must shoot again from the
cue ball current position, otherwise the opponent gets the turn. In the case of a foul, the
opponent also gets a ball-in-hand, which gives him the opportunity to place the cue ball
anywhere on the table. When the last ball of the current player enters the pocket, he needs

Revista de Ciências da Computação, 2017, Número Especial Videojogos

48

to seek the 8 ball. When the 8 ball enters a pocket this way, and only at this situation, the
player wins the game, but if it enters a pocket in any other situation the player loses the
game immediately.

2.2. Shot Parameters
In every Billiards variant, a shot is defined by five continuous parameters (illustrated in
Figure 2):

● Ȉ: Aiming angle,
● θ: Cue stick elevation angle,
● V: Initial cue stick impact velocity,
● a and b: Coordinates of the cue stick impact point on the cue ball.

Figure 2. Parameters that define a shot in Billiards [Smith, 2006]

2.3. Shot Types
Pocketing, striking and kissing are some of the events that can occur in a regular 8-Ball
match. The event that happens when a ball enters a pocket is called pocketing; a collision
between a moving ball and a stationary ball with the purpose of moving the stationary ball
is called strike; a shot whose purpose is just to adjust the trajectory of the moving ball is
called a kiss. A shot can also consist in a combination of events. By combining them,
human players can distinguish a variety of shot types. The following are the most common
[Bahr, 2012] (illustrated in Figure 3):

● Break shot: Initial shot, which has the purpose of dispersing the initial cluster of
balls.

● Direct shot: The object ball is directly hit by the cue ball towards a pocket, without
any other collisions involved.

● Bank shot: The rail is used to maneuver the object ball towards a pocket.

Revista de Ciências da Computação, 2017, Número Especial Videojogos

49

● Kick shot: The rail is used to maneuver the cue ball towards the object ball.
● Combination shot: A collision with another ball is used to attempt to pocket the

object ball.
● Pulk shot: Similar to combination shot but the two object balls are very close to

each other and align in a way that they are pointing to a pocket.
● Kiss shot: An additional ball is used to adjust the trajectory of another ball.
● Safe shot: This type of shot is used when the player assumes that he is more likely

to lose the turn. Its purpose is to reposition the cue ball in such way that it makes it
difficult for the opponent to continue.

Figure 3. Shot types: (a) direct shot, (b) bank shot, (c) kick shot, (d) combination shot,
(e) pulk shot, (f) kiss shot [Bahr, 2012]

3. Related Work

Currently, there are already several artificial 8-Ball players; PickPocket [Smith, 2006]
[Smith, 2007], CueCard [Archibald, 2009] [Archibald, 2010] [Archibald, 2011] and
PoolMaster [Dussault, 2006] [Dussault, 2007] [Landry, 2007] [Landry, 20129][Landry,
2013], which participated in the Pool Computer Olympiads, and JPool [Bahr, 2012].

To better understand the differences among them, in this section, we will go through the
most important topics, starting with a possible game model for 8-Ball found by Christopher
Archibald et al.

3.1. Billiards Game Model
Christopher Archibald [Archibald, 2009] [Archibald, 2011] proved that billiards has a pure

stationary Markov perfect equilibrium [Chakrabarti, 2013]. This means that when a player

Revista de Ciências da Computação, 2017, Número Especial Videojogos

50

is selecting a shot to execute, he only needs to think about the current state of the game to
get the optimal shot. At some state s of the game, he will not change his strategy
concerning on how that state was reached, whether the game is at the beginning or at the
end or whether the opponent is good or bad. When selecting a shot, we want it to pocket a
ball and have the cue ball at a good reposition to continue playing. If that is not possible
under our strategy, we want the cue ball to be at a position where a successful shot would
be as difficult as possible for any opponent. With this in mind, we have theoretical proof
that we only need to explore shots based on the current and future states (for position play)
of the game to reach the optimal shot. Trying to understand who is our opponent and what
are his actions on the game will not give us better results. If a strategy is optimal it will
remain optimal regardless the opponent actions and strategy. However, the proposed model
remains intractable due to the action space being continuous. To compute the value of a
state, we would need to try all the possible actions, which are infinite. Thus, any approach
still needs to perform an intelligent search space partitioning to overcome this problem.

3.2. Search Algorithms
For the particular case of 8-ball and considering stochastic environments, PickPocket
[Smith, 2006] [Smith, 2007] and JPool [Bahr, 2012] suggested Expectimax and Monte-

Carlo as possible search algorithms.

Expectimax generates chance nodes for every action with a stochastic outcome. These
chance nodes will be evaluated with their probability of occurrence. In the case of 8-Ball, a
direct approach would mean a sum of over an infinite number of outcomes, each with a
minuscule probability of occurring.

Monte-Carlo was used in almost all the artificial players that will be explained in Section
Shot Generation, with the only exception of PoolMaster, since Monte-Carlo by sampling
shots avoids the limitation of Expectimax and gives the developer more control over the
algorithm complexity.

PoolMaster uses a heuristic based search algorithm to select the best sequence of shots. It
clusters balls with the K-Means algorithm [MacQueen, 1967] to improve the search and
explore less riskier shots first.

3.3. Shot Generation
8-ball has a continuous and stochastic domain nature, so it is impossible to enumerate all
the possible shots. Generating only the most relevant shots for a particular situation is the
key for an intelligent search space partitioning that allows to improve the overall
performance of the program.

Since the shot generator algorithm differs for each one of the artificial players, we will
present them individually.

Revista de Ciências da Computação, 2017, Número Especial Videojogos

51

3.3.1. PickPocket
Generates shots one type at a time in an increasing order of difficulty. Variations are
generated by perturbing the original shot with the base velocity retrieved from a
precomputed table. The break shot parameters are selected by sampling 200 shot variations
and selecting the one which returns the best results. Safe shots are generated by perturbing
V and Ȉ and evaluating in the opponent's perspective. For Ball-in-hand situation, the table is
discretized in a grid and every cell is assigned with the value of the best shot as if the ball
was there, and then a Hill-Climbing search is performed in several random cells to find a
local maximum.

3.3.2. CueCard
Similar to PickPocket, but it does not prioritize the shot types. It clusters similar resulting
states with K-Means to reduce the state space. The Break Shot used was precomputed. The
Ball-in-hand is similar to PickPocket but before discretizing the table, it tries to place the
cue ball where the ghost-ball would be (see Section Aiming).

3.3.3. PoolMaster
The focus of PoolMaster lies on position play. First it generates all pairs ball-pocket
possible given the current state of the table, then it analyzes the table for the possible next
shots. Once this information is gathered, it calls an optimization algorithm to minimize an
objective function that takes into account the distance to the next shot, as well as pocketing
the target ball.

3.3.4. JPool
Takes a different approach, given that it models a shot as a series of steps like a tree, not
limiting itself to predefined shot types. The break shot parameters were precomputed. For
position play, JPool creates polygons around every ball where it would be a good place to
pocket and then does a line-polygon overlap detection using the trajectory of the cue ball at
maximum speed. The crossing zones are rated as if the cue ball was there and the cue ball is
aimed to reach these areas. The rest of the parameters are discretized.

3.4. Aiming
PickPocket [Smith, 2006] [Smith, 2007] and CueCard [Archibald, 2009] [Archibald, 2011]
use the traditional concept called ghost ball (illustrated in Figure 4). If the cue ball is aimed
in such a way that it hits the object ball in the position of the ghost ball, the object ball will
travel in the direction of the target position.

PoolMaster [Dussault, 2006] [Dussault, 2007] [Landry, 2007] [Landry, 2012] [Landry,
2013] and JPool [Bahr, 2012] use the same concept in a different way. Instead of aiming
the object ball to the center of the pocket, they aim it to its limits which gives them two
ghost ball positions (illustrated in Figure 4). These leftmost and rightmost are adjusted to

Revista de Ciências da Computação, 2017, Número Especial Videojogos

52

take into account the possible obstacles in the way, so, if the ball does not fit between these
margins, the shot will be impossible [Bureau, 2012].

Figure 4. Aiming concepts

(a) Ghost ball concept [Smith, 2006)

(b) Left and rightmost concept [Bahr, 2012]

3.5. Evaluation Function
A search algorithm evaluates shots to differentiate them and selects the best one for
execution. There are several ways of measuring and differentiating shots from each other.

JPool [Bahr, 2012] uses an algorithm based on Monte-Carlo search with a sample size of
400. The leaves are evaluated using a sum of several heuristics advised by a professional
player [Koehler, 1995] such as the quality of the current cue ball position, the number of
balls in game and the difficulty of pocketing the other balls.

PickPocket [Smith, 2006] [Smith, 2007] and CueCard [Archibald, 2009] [Archibald, 2011]
also use a Monte-Carlo search based algorithm, with 15 and 25 to 100 samples (depending
on the time available), respectively. The leaves are evaluated using the sum of the
probability of success of the best 3 shots retrieved from the precomputed table.

PoolMaster [Dussault, 2006] [Dussault, 2007] [Landry, 2007] [Landry, 2012] [Landry,
2013] calculates the value of a node using a function that takes into account the quality of
the cue ball position, the probability of being in that position zone and the range of
successful parameters with a sample of 15.

Shing Chua et al. explained in [Chua, 2006] [Chua, 2007] the calculation of the shot
difficulty using fuzzy logic. The fuzzy sets were defined for the distance traveled by the cue
ball before the collision with the target ball, the distance from the target ball to the pocket
and the cut angle (the angle between the direction the target ball will have after impact and

Revista de Ciências da Computação, 2017, Número Especial Videojogos

53

the direction of the cue ball before impact). They infer the rule for the specific shot
situation during runtime. Only direct, bank and combination shots are considered and they
are prioritized in this order.

4. Solution

In this section, we will explain how we explored and implemented the main architectural
components of our artificial player: search algorithm, shot generator and evaluation
function.

4.1. Search Algorithm
The search algorithm is responsible for selecting the best sequence of shots. In this layer of
the artificial player program, it is crucial to only explore the most relevant nodes of the tree
to reach a solution, specially when the time constraints are tight.

Monte Carlo was selected as base for the search algorithm since it works very well in the 8-
Ball domain, as it can be seen in the artificial players studied in Section Related Work.

Using the original Monte Carlo algorithm and evaluating each node as success or failure,
being success pocketing the target ball in the target pocket and failure otherwise, we end
with a sequence of shots rated with their probability of success. This approach highly
depends on sampling and has a huge explosion of states generated since Monte Carlo

Figure 5. General architecture of MiniPool

Revista de Ciências da Computação, 2017, Número Especial Videojogos

54

performs a new search for every sample. For that reason, some pruning techniques were
used. The easiest and more obvious technique is to stop the search when the probability of
success of a given shot is under a certain threshold. Based on the results in [Smith, 2006]
[Smith, 2007], shots besides the direct ones are only used 6% of the time. By generating
shots for a given state of the table, one type at a time, in order of increasing difficulty, we
can reduce even more the number of states generated when a direct shot is found.

Before the search starts, shots are rated and sorted based on their difficulty using a function
from [Chua, 2006] [Chua, 2007]. This function is based on the distance between the balls
and the pocket, and the cut angle, according to the following equation:

 !
"#$"$%

&'()*

 is the shot difficulty, "#$ is the distance between the cue ball and the target ball, "$% is
the distance between the target ball and the pocket and * is the cut angle between the two
balls. Since this formula penalizes longs shots and high cut angles, the shots that will be
explored first will be the ones closer to the cue ball and less vulnerable to noise. This
formula does not need to be very precise since it will only serve to differentiate the easiest
shots from the others. By rating all the shots with this formula and sorting the list in
crescent order, we are guaranteeing that the shots with the highest probability of success
(less difficult) will be at the beginning. Since we are evaluating one type of shot at a time,
we stop the search when the difficulty of a shot is too high and give an opportunity to the
next shot type, trying to find an easier solution.

Although we have significantly reduced the state space with these modifications, there is
still the case where all the shots are too difficult and the cut condition is never reached.
PoolMaster optimizes the shot parameters for every next ball with a local optimization
algorithm, which is the approach that achieves better results. Therefore, if we use the search
only to find the next ball and the sampling only to evaluate the probability of pocketing and
repositioning, we will not need to perform a search in every sample. We already know
which ball we want to reach and the probability of succeeding the plan will already give us
the difficulty of succeeding. The question is: which table state should we use to search for
the next ball? In this case, we used the noiseless state, since it will be the average resulting
position of the cue ball.

By using the reposition for the next ball as part of the evaluation, we are forcing a shot to
be at a good reposition. This allows us, in an implicit way, to benefit shots that not only
break clusters, but also to guarantee that the cue ball will be at the best position possible for
the next ball.

Revista de Ciências da Computação, 2017, Número Especial Videojogos

55

4.2. Shot Generator
The shot generator is responsible for generating all the possible shots for a given table state.
In this work a backtracking search algorithm with ray tracing was used, this kind of search
for shots guarantees from the root that the shots will be executable, and will also give us for
free a complete description of what will happen on the table, such as the balls and rails
involved and distance traveled. This information is very important to control the
complexity of the shots being generated and also gives us a tool to control the skill on the
player in terms of tactic behavior for a single shot. When casting a ray we check if it
intersects a ball and also if there is a ball with a perpendicular distance smaller than the
diameter of a ball. So that we can be sure that there will be no other ball in the way

The general algorithm is the following:
For every pocket, set the objective point as its center:

1. Cast a ray from every ball to the objective point:
a. If the ray reaches the objective point, set the objective point as the center of

the ghost ball position for this ball.
i. If the cut angle is greater than a certain limit, stop iteration on this

path.
ii. Else, if this ball is the cue ball, calculate the shot parameters and add

it to the list of shots.
iii. Else, go to step 2.

b. Else, stop iteration on this path.

Ball collisions with high cut angles are not explored to remove shots that barely touch the
balls and that do not produce relevant results.

For the case of the bank and kick shots, we used the PoolMaster table mirroring method
adapted for ray tracing approach. For every rail collision allowed, a level of mirrors is
added to the raytracer object list. For example, with 1 rail allowed, we add 4 mirrored
tables (one on the left, right, top and bottom of the original table); with 2 rails allowed, we
add 12 tables (4 from the level 1 and 8 around level 1 for the level 2). With this information
on the raytracer, we can treat bank and kick shots like direct and combinations shots.
However, the higher the number of rails allowed, the slower the ray tracing will be due to
the number of objects in the list; that is why the bank and kick shots are only explored after
combination shots. When using this method, we are assuming that the angle of incidence is
equal to the angle of reflection, which is not true in the FastFiz engine.

Using the proposed approach, by only controlling the depth of the search and the number of
rail collisions allowed, we have a general algorithm for almost every shot type without
having to explicitly look for it.

The calculation of the initial shot parameters is done as follows:

Revista de Ciências da Computação, 2017, Número Especial Videojogos

56

● θ is set to the minimum possible value.
● Ȉ is calculated aiming the cue ball center to the ghost ball center (the objective point

of the ball before the cue ball).
● a and b are set to zero.
● V is retrieved from a precomputed table of minimum velocities

To quickly find the minimum velocity required to pocket a ball, for a given shot situation, a
minimum velocities table is precomputed. PickPocket [Smith, 2006] [Smith, 2007] and
CueCard [Archibald,2009] [Archibald, 2010] [Archibald, 2011] generated direct shot
situations by discretizing the cut angle (the angle that the cue ball makes with the target
ball), the distance between the cue ball and the target ball, and the distance of the target ball
to the pocket and simulating shots incrementing the velocity by 0.1m/s until the ball is
pocketed. We generalized this to every shot type by discretizing the distance traveled by the
sum of all the balls involved and the number of balls and rail collisions involved in the shot
also.

At this point, we have a list of shots that put the target ball in the target pocket with the
minimum velocity. There is an infinite number of variants of these shots that could still
pocket the target ball. For position play, it is important to generate a set of shots that
captures the range of possible follow-up states. The solution used to find the most
significant variants was to pick n values equally spaced starting from the minimum
parameter value up to the maximum for each shot parameter. The shots that accomplish the
goal of pocketing the target ball are added to the shot list. Since the number of variants has
a huge impact on the branch factor of the algorithm, a study of the most relevant parameters
was made in Section Results.

4.3. Evaluation Function
The evaluation function is responsible for differentiating shots from each other with a
specific metric. In MiniPool, the evaluation of a shot is made by counting the number of
times a shot is successful while sampling it a number of times with noise. A shot is
considered successful if it pockets the target ball in the target pocket and it has a clear way
to the target reposition point. If, while calculating this probability of success, a shot cannot
reach a minimum threshold of probability, the evaluation stops. This is done to reduce the
computation time on poorly reliable shots. With this evaluation function, we have a metric
of how difficult it will be to execute a shot that leads to a good reposition for the next one.
There is no need for anything else since, if a shot is more successful than another, it is
because it will be less vulnerable to noise. However, this approach might make a ball closer
to a pocket better than another. According to Jack Koehler [Koehler, 1995] these balls
should only be pocketed in special situations. Foreseeing these situations requires a better
plan for a sequence of shots which, due to shot execution time constraints, could not be
done in this work.

Revista de Ciências da Computação, 2017, Número Especial Videojogos

57

5. Results

To demonstrate the quality and potential of the approach developed, the results of various
tests are presented in this section as well as the environment in which the tests were made.
In all the tests only one component is modified in order to better demonstrate the impact of
it. The graphics in every test show the accumulated average of the clean success percentage
of the table (to demonstrate that it stabilizes before the end of the test), the time per shot
and the reason why the algorithm stopped the iteration (to understand what is causing it to
stop). The clean success metric is the number of times the player was able to pocket all the
balls without losing the turn divided by the number of games played. The time per shot
metric is the time passed since the beginning of the turn until execute the shot (computation
time).

The tests were made using the FastFiz engine. For each test, 500 table configurations were
randomly generated and the algorithm was executed until it loses the turn. The average time
until it executes a shot and the reason why the iteration stopped are stored for each table.
The computer used for the tests has a Windows 10 Pro Operating System, Intel Core i5
CPU at 2.30 GHz and 4 GB of RAM.

In FastFiz, shots are affected by a perturbation model, noise. The standard deviation values
for each parameter are: Ȉ = 0.125°, θ = 0.1°, V = 0.075m/s, a = 0.5mm and b = 0.5mm. In
these tests, the simulations were made at 0x and 0.5x of these deviations. The maximum cut
angle is set to 70°, the maximum number of balls and rails involved in the shot generation
is set to 3 and 1 respectively, the maximum shot difficulty is set to 0.7, the minimum
success probability is set to 60% and the acceptable probability of success is set to 80%.

5.1. Analysis
5.1.1. Results with noise
In general, the clean success probability in a noisy environment is very low comparing with
the other players. PickPocket is able to reach 67% within 60 seconds per shot, JPool
reaches 74% with 44 seconds per shot and PoolMasters reaches 97% with 19 seconds per
shot. Looking at Figure 6, we can see that the main problem causing the low results are
shots that failed to pocket the target ball. This problem can occur for two reasons; either the
shot parameters were wrong or the shot was risky. This test was made with a sample size of
25, a depth of 2 and 125 variants of V, Ȉ and b (5 per parameter). Looking at the results in
Figure 8, by using a bigger sample size, we can increase by 10% the clean success
probability, taking 7 more seconds per shot. In Figure 7 we used 2 more variants per
parameter, resulting in 343 variants per shot. As expected, this did not change significantly
the success of the player. For the change in the number of variants to be relevant, the gap
between each parameter variant needed to be as small as possible, however for this gap to
be small enough we would need much more than 7 variants per parameter. A possible

Revista de Ciências da Computação, 2017, Número Especial Videojogos

58

solution in order to not depend on shot variants would be an optimization algorithm like
PoolMaster did. For each ball-pocket combination it makes an optimization search to find
the parameters that pocket the ball and reach a good position. This kind of approach
however, relies on an objective function that needs to have a finer discretization for the
algorithm to find a result faster. Finding such function in 8-Ball domain it is not an easy
problem.

(a) Average time per shot stabilizes at 1,94
seconds

(b) Table clean success percentage,
Stabilizes at 35.8%

(c) Motive for the algorithm to stop the iteration

Figure 6. Test results for 25 samples with 0.5x noise

Revista de Ciências da Computação, 2017, Número Especial Videojogos

59

Figure 7. Average time per shot using 343 variants per shot. Stabilizes at 6.69 seconds with 0.5x

noise

(a) Average time per shot stabilizes at 9,74
seconds

(b) Table clean success percentage, stabilizes at
45.2%

Figure 8. Test results for 100 samples with 0.5x noise

5.1.2. Results without noise
The results without noise were good comparing to others: JPool and PoolMaster are able to
achieve 100% in approximately 44 and 19 seconds respectively. With a depth of 2 and 125
variants, MiniPool can reach clean table success of 86% in less than half a second. Using
all shot types, we can have an improvement of 5% with a cost of 4 more seconds.

Since there is no noise in these tests, the reason for the algorithm to not be able to clean the
table is probably a planning problem. To check this, a test was made using a depth of 3 (see
Figure 11), however the results did not improve. Given that the results in Figure 10 were
better, this drives us to conclude that there are situations when the algorithm is not able to
continue because the target ball or pocket is obstructed. This situation prevents a direct shot

Revista de Ciências da Computação, 2017, Número Especial Videojogos

60

from being executed for that ball. Since the algorithm searches for one type at a time,
another direct shot will be chosen, and the next sequence of shots might put the cue ball in
a situation where the algorithm cannot place it near the problematic ball again or reach that
pocket. When we generate all shots at once, the algorithm will probably find a situation
where the ball can be pocketed using another type of shot and solve the problematic ball.

(a) Average time per shot stabilizes at 0.29
seconds

(b) Table clean success percentage, Stabilizes
at 86%

Figure 9. Test generating shot types one by one without noise

(a) Average time per shot stabilizes at 4.57
seconds

(b) Table clean success percentage, Stabilizes
at 91%

Figure 10. Test generating all shot types without noise

Revista de Ciências da Computação, 2017, Número Especial Videojogos

61

(a) Average time per shot stabilizes at 4.12
seconds

(b) Table clean success percentage, Stabilizes
at 87%

Figure 11. Test with a depth of 3 without noise

6. Conclusion

The main purpose of this work was to develop an artificial player for 8-Ball video game
with a real-time response. Looking at the results of the tests without noise, we consider that
this goal was achieved since videogames normally do not have noise perturbations. By
ordering the shots by difficulty, taking into account the distance of the balls, we are able to
clear the table by zones. Combining this with the evaluation function, which benefits shots
that are in a good position for the next ball, MiniPool can clear almost every table in less
than half a second without having to search deeper in the tree.

On the other hand, a goal that was also in mind when developing MiniPool was to develop
a player that could play in an environment with noise. The results for this case were not as
good as expected and there are still some improvements that can be done as future work.
One of the main problems of the algorithm was relying too much on the number of shot
variants for the look-ahead. PoolMaster, by using the optimization approach, removed this
dependence and could expend more time generating a more robust shot. Using a similar
approach in MiniPool might be the solution to improve the performance in a environment
with noise.

Other improvements that can be done to reduce the time needed to generate the shots for a
given state are the ray tracing acceleration techniques, such as kd-trees. By using these
techniques we can reduce the number of objects that need to be tested for collision, and
optimize the performance of the raytracer. This optimization will probably allow us to
generate all shot types at once with a lower cost in time.

Revista de Ciências da Computação, 2017, Número Especial Videojogos

62

MiniPool was developed to be highly configurable and give a complete control of its skill.
Since MiniPool was developed to be used as an artificial opponent in an 8-Ball video game,
it would also be interesting to study how to simulate several types of skill or even
automatically adapt the skill to its opponent.

Acknowledgments
Thank you Vânia Mendonça, Soraia Meneses Alarcão, Fabio Alves, Élvio Abreu, Ruben
Rebelo, João Moreira, Luís Sampaio, Liliana Santos, Joaquim Silva, Simone Silva, Beatriz
Branco, Conceição and Carla Branco for your feedback and support.

This work was supported by national funds provided through Fundação para a Ciência e a
Tecnologia (FCT) (UID/CEC /50021/2013).

References

Christopher Archibald, Alon Altman, Michael Greenspan, and Yoav Shoham. 2010.
Computational pool: A new challenge for game theory pragmatics. AI Magazine 31, 4
(2010), 33–41.

Christopher Archibald, Alon Altman, and Yoav Shoham. 2009. Analysis of a Winning
Computational Billiards Player.. In IJCAI, Vol. 9. Citeseer, 1377–1382.

Christopher Archibald and Yoav Shoham. 2009. Modeling billiards games. In Proceedings
of The 8th International Conference on Autonomous Agents and Multiagent Systems-
Volume 1. International Foundation for Autonomous Agents and Multiagent Systems, 193–
199.

Christopher Archibald, Yoav Shoham, Jurij Leskovec, and Robert Wilson. 2011. Skill and
Billiards. Stanford University.

Jack H Koehler. 1995. The Science of Pocket Billiards. Sportology publications.

James MacQueen and others. 1967. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, Vol. 1. Oakland, CA, USA., 281–297.

Jean-François Landry and Jean-Pierre Dussault. 2007. AI optimization of a billiard player.
Journal of Intelligent and Robotic Systems 50, 4 (2007), 399–417.

Jean-François Landry, Jean-Pierre Dussault, and Philippe Mahey. 2012. A robust controller

Revista de Ciências da Computação, 2017, Número Especial Videojogos

63

for a two-layered approach applied to the game of billiards. Entertainment Computing 3, 3
(2012), 59–70.

Jean-François Landry, Jean-Pierre Dussault, and Philippe Mahey. 2013. A heuristic-based
planner and improved controller for a two-layered approach for the game of billiards. IEEE
Transactions on Computational Intelligence and AI in Games 5, 4 (2013), 325–336.

Jean-Pierre Dussault and Jean-François Landry. 2005. Optimization of a billiard player–
position play. In Advances in Computer Games. Springer, 263–272.

Jean-Pierre Dussault and Jean-François Landry. 2006. Optimization of a billiard player–
tactical play. In International Conference on Computers and Games. Springer, 256–270.

Jens-Uwe Bahr. 2012. A computer player for billiards based on artificial intelligence
techniques. (2012).

Michael Smith. 2006. Pickpocket: an artificial intelligence for computer billiards. In
Masters Abstracts International, Vol. 45.

Michael Smith. 2007. PickPocket: A computer billiards shark. Artificial Intelligence 171,
16 (2007), 1069–1091.

Nicolas Bureau. 2012. Sensibilité des coups au billard. CaMUS, Université de Sherbrooke,
Sherbrooke, QC, Canada (2012), 9–26.

Shing Chyi Chua, Eng Kiong Wong, and Voon Chet Koo. 2005. Intelligent pool decision
system using zero-order sugeno fuzzy system. Journal of Intelligent and Robotic Systems
44, 2 (2005), 161–186.

Shing Chyi Chua, Eng Kiong Wong, and Voon Chet Koo. 2007. Performance evaluation of
fuzzy-based decision system for pool. Applied Soft Computing 7, 1 (2007), 411–424.

Subir K Chakrabarti. 2003. Pure strategy Markov equilibrium in stochastic games with a
continuum of players. Journal of Mathematical Economics 39, 7 (2003), 693–724.

Revista de Ciências da Computação, 2017, Número Especial Videojogos

64

David Silva received a MSc degree in Information Systems and Computer Engineering
with a specialisation in Artificial Intelligence and Multimedia systems from Instituto
Superior Técnico, Universidade de Lisboa in 2015. His MSc dissertation was developed
at the Intelligent Agents and Synthetic Characters Group (GAIPS), INESC-ID Lisbon,
and focused on the application of Artificial Intelligence to games. He is currently
working at Miniclip where he develops mobile games.

Rui Prada is a Senior Researcher at the Intelligent Agents and Synthetic Characters
Group (GAIPS), INESC-ID Lisbon and an Associate Professor at the Computer Science
Department of Instituto Superior Técnico, Universidade de Lisboa (IST). He has a
degree in Computer Science with a specialisation in Artificial Intelligence and a PhD in
the same field. His currently conducts research in the fields of Social Intelligent Agents,
Human-Agent Interaction, Computer Games and Applied Gaming, and User Centred and
Experience Design.

