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Abstract 

Regardless of the geographic and of the historical context, the primary source of scientific 

inquiry has always been curiosity. Prior to any economic motivation, people engage on 

research activities because of their urge to know and of their willingness to discover 

novelties. Over time, curiosity has led the attention of those engaged in the quest for 

knowledge to be dispersed across all virtually imaginable subjects. In this paper, a 

theoretical model is devised to investigate the implications of the curiosity driven 

dispersion of attention. The main implication is that even under a scenario of constrained 

available attention, its dissemination across a progressively wider array of scientific 

objects is capable of conducting to an outcome of sustained long-term growth of the 

number of scientific endeavors undertaken with success. 

 

Keywords: Curiosity; Science frontier; Dispersed attention; Bernoulli trials; Geometric 

distribution; Endogenous growth. 

 

 

Título: Curiosidade Científica  

 

Resumo: Independentemente do contexto geográfico ou histórico, a fonte primordial de 

pesquisa científica sempre foi a curiosidade. Antes de qualquer motivação económica, as 

pessoas envolvem-se em atividades de investigação devido ao seu impulso em conhecer 

e à sua determinação em descobrir coisas novas. Ao longo do tempo, a curiosidade levou 

a que a atenção dos cientistas se dispersasse virtualmente por todos os assuntos 

imagináveis. Neste artigo, um modelo teórico é desenvolvido com o objetivo de investigar 

as implicações da dispersão da atenção guiada pela curiosidade. A principal implicação é 

que mesmo num cenário de atenção limitada, a sua disseminação através de um número 

progressivamente maior de objetos científicos é capaz de conduzir a um resultado de 

crescimento sustentado de longo prazo do número de atividades científicas prosseguidas 

com sucesso. 

 

Palavras-chave: Curiosidade; Fronteira da ciência; Dispersão de atenção; Tentativas de 

Bernoulli; Distribuição geométrica; Crescimento endógeno. 
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But curiosity does not mean and has never meant just a single thing. Even if we accept the 

modern definition of `eagerness to know or learn something', there are many ways to be 

curious. One can flit in gadfly manner from one question to another, acquiring little bits of 

knowledge without ever allowing them to cohere and mature into a real understanding of the 

world's mechanisms. One can store up snippets of information like a miser, never putting them 

to good use. One can pose questions idly or flippantly, with no plan for coherent enquiry into 

nature. One can be curious about matters that really are none of one's business, such as the 

sexual habits of one's neighbours. But one can also seek knowledge with serious and considered 

intent -- and may then do so either in the manner of Isaiah Berlin's fox who would know many 

little things, or as the hedgehog who knows a single thing profoundly. One can be curious 

obsessively, or passionately, or soberly, or with clinical detachment. 

Ball (2012, p.7) 

 

 

1. Introduction 

From the tiniest insect to the largest galaxy in the universe, the domains of science extend 

across all the living beings, inert objects, social processes and abstract constructions. 

Scientific knowledge is concerned with everything that captures human attention and 

imagination. 

Notwithstanding its pervasiveness, the matters of interest to science are constantly 

expanding due to the unlimited curiosity that we know to be innate to mankind. Even 

when one apparently has reached the limits of human capabilities to approach and act 

upon the surrounding world, new avenues for the exploration of reality open up to the 

inquisitive mind: the invention of the telescope and of the microscope allowed to continue 

to contemplate nature beyond the potential of human eyesight; increasingly efficient 

transportation, by land, sea or air, led to the enhancement of the possibilities to travel 

farther and faster; advances in medicine redounded on the discovery of ways to mitigate 

or eradicate many infirmities including highly contagious diseases.1 

The above reasoning suggests that scientific knowledge knows no boundaries, hence 

being subject to sustained and persistent growth. But how is this possible in a world where 

the resources that might be allocated to research are inevitably scarce? In this paper, a 

framework of analysis is proposed to confront unbounded scientific curiosity with the 

limited amount of attention humanity can allocate to research activities. It turns out that 

the solution to this puzzle is related with the idea of dispersion: even in a setting where a 

fixed amount of attention is available, dispersing attention across a progressively wider 

array of scientific challenges results in perpetual growth. This result does not require an 

 
1
 Technical and scientific advances, as the ones mentioned, are obviously the climax of processes where 

curiosity led to step-by-step incremental innovations that ultimately culminated in important improvements 

for the existence of human beings. The invention and first uses of the telescope and of the microscope by 

Hans Lippershey, Zacharias Janssen, Cornelis Drebbel, and Galileo Galilei, the development of aeronautics 

by Sir George Cayley, Otto Lilienthal, Horatio Phillips, and the Wright brothers, or the discovery of 

vaccines by Edward Jenner, Louis Pasteur, or Maurice Hilleman, are not just the straightforward outcome 

of the resilience of these brilliant minds; but it was their curiosity, building upon the curiosity of many that 

preceded them, that allowed science and knowledge to evolve in benefit of all mankind. 
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increasing value of new vintages of knowledge, neither a strong obsolescence of old 

knowledge, nor any other artifice. 

In order to formally approach scientific curiosity, we introduce the notion of science 

frontier. The science frontier will emanate from a discrete-time distribution translating 

the probable number of experiments the scientific community has to undertake before 

achieving success on a given research project. These experiments take the designation of 

Bernoulli trials. A constant stock of attention is considered, and a choice has to be made 

by the scientific community: to concentrate attention over time in the scientific puzzles 

that remain to be solved or, alternatively, to disseminate attention by an ever increasing 

number of new research challenges.2 

Attention dissemination is the option leading to sustained growth, as the analysis will 

reveal. Attention dissemination is also the possibility that best fits the above arguments 

on the role of curiosity: the willingness to explore new physical, social or conceptual 

worlds, searching for new knowledge, is the force that will shape new scientific frontiers, 

thus triggering a mechanism of perpetual scientific self-regeneration. 

The contents of the paper proceed as follows. Section 2 briefly discusses the role of 

curiosity in expanding science and the universe of scientific objects. Section 3 describes 

the notion of science frontier and the dynamics underlying the emergence of new research 

questions. Section 4 is dedicated to the analysis and discussion of long-term growth. In 

section 5, a few potential extensions of the model are put into perspective. Section 6 

concludes. 

 

2. A Note on Curiosity and the Scientific Inquiry 

From the writings of the psychologist Robert Plutchik (Plutchik, 1980), one draws two 

important ideas about curiosity. First, that it can be classified as an emotion indelibly 

associated with inquisitive thinking and investigative behavior; second, that it is 

conceivable as a feeling arising in the confluence of two primary emotions: trust and 

surprise. This and the common sense perception one has about curiosity, make it evident 

the difficulty in classifying such entity: is it an emotion, a feeling, a quality, a flaw, a 

behavioral attitude, a spontaneous reaction to external stimuli? In fact, curiosity has a 

multifaceted nature, and it can be any of these, depending on the perspective from which 

it is being looked upon. 

In order to launch the discussion on the role of curiosity as a driver of scientific progress, 

we briefly highlight a few of its most prominent features, mostly agreeing with the 

reflection of Loewenstein (1994), and Golman and Loewenstein (2015) on the subject: (i) 

A plain definition of curiosity is that it is a compulsion to know, a willingness to obtain 

information for its own sake, regardless of the underlying utility it might bring. Hence, 

from the point of view of rational choice, curiosity might be interpreted as an anomaly; 

(ii) Curiosity is transient, volatile and superficial, since it can be ignited suddenly and 

with no apparent reason, it can change its nature fast, and it eventually disappears at a 

 
2
 In conceptual terms, the adopted notion of science frontier has some parallel with Kortum's (1997) 

technology frontier, a popular analytical and geometrical tool used by economists to address issues 

pertaining to international trade and growth. 
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glance; (iii) There is not a clear cut transparent relationship between curiosity and 

knowledge. Curiosity motivates the quest for knowledge and the urgency in solving 

problems. But new discoveries might also unveil hidden information that exerts a 

negative influence over the subsequent willingness to know; (iv) Curiosity is attached 

with the human tendency to fill in information gaps. When people realize the existence 

of an information gap, they will search for the associated knowledge, even when the 

expected outcome is not likely to bring any utility gain; (v) Technical studies on curiosity 

typically associate it with the notion of entropy (Kim et al., 2013). By collecting 

information, individuals satisfy curiosity, learn about random outcomes or uncertain 

beliefs, and consequently reduce entropy. 

Confining the discussion to the domain of scientific research, one finds curiosity in the 

short list of motives underlying the choice of the subjects scientists express interest in 

approaching. In Lam (2011), three meaningful motives for scientists to engage in research 

activities are identified, which receive the nicknames `gold', `ribbon' and `puzzle'. The 

gold motive concerns financial rewards, the ribbon motive is attached to peer recognition 

and reputation gains, and the puzzle motive is related with the intrinsic satisfaction that 

comes from investigating and discovering new things. It should be evident that this third 

motive, puzzle, is the one directly associated with intellectual curiosity. Although a 

significant portion of the scientific activity in modern days is pursued within formally 

organized environments (universities, laboratories, firms, ), making material gains and 

reputation important elements of the research activity, science is, in fact, more than this. 

Inside and outside the mentioned environments, there is a natural proclivity for human 

beings to be creative, to search for new knowledge and to fill in their information gaps. 

The puzzle motive for research is the most pervasive of the three mentioned, and it is the 

one that most easily thrives in any setting, independently of the degree of organization of 

purposive research activities. 

Along the same lines, Alon (2009) emphasizes that the emergence of scientific endeavors 

is shaped by the weighting of two main dimensions, along which the researcher has to 

equate what a meaningful research project truly is. One of the dimensions is feasibility, 

i.e., the extent in which a problem is easy or difficult to approach. The other dimension 

is named interest, and it translates the knowledge one expects to attain when addressing 

such issue. Clearly, in such a perspective, interest is directly associated with the desire to 

fill in information gaps, and therefore it can be renamed as curiosity. In this context, 

feasibility and interest might be conceived as the two axes of a two-dimensional space 

containing a Pareto frontier. Problems located in the frontier represent the optimal pairs 

feasibility-interest and, thus, those that scientists should address (problems beyond the 

frontier are unapproachable under the current state of knowledge; those between the axes 

and the frontier are irrelevant or already solved). The choice of a problem in the Pareto 

frontier should then weight the curiosity it generates against the expected outcome in 

terms of feasibility. Although curiosity is important as a criterion to select scientific 

challenges, it must be balanced with the reasonability or feasibility of the research goals. 

The history of scientific accomplishments and advancements exposes two general 

important features: first, science is cumulative, it deconstructs prior knowledge at the 

same time it recognizes its value and incorporates it in the new paradigms; second, science 

tends towards dispersion, in the sense that new discoveries typically activate a wide array 

of new scientific challenges that researchers become interested in approaching. The 

second of these features, dispersion, although less salient, has been of key importance for 
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the progress of human knowledge. As the reflection on the evolution of science in 

Renaissance Europe by Ball (2012) thoroughly describes, science ended up by being 

interested in everything, from the exotic animals and plants of the new world to the stars 

and planets in the outer space, to the observation of physical phenomena and to chemistry 

experiments, or to the fine analysis of microcosms. 

When all the questions and doubts one can imagine are likely to emerge in the mind of 

scientists, we find no boundaries to what science can approach and achieve and we will 

have an endless process of systematic inquiry about everything we encounter in nature, 

in society and in the laboratory. Even recognizing that the resources one can allocate to 

research are necessarily bounded (being attention the fundamental resource in this 

respect), curiosity will have no bounds, and thus the stock of attention will disseminate 

to an ever increasing number of scientific problems. This confrontation between limited 

resources and the urge to spread them in order to tackle with more and more interrogations 

is the subject that motivates the model in the following sections and the result that 

sustained growth is possible even in a world of limited resources. 

The pervasive nature of science is also, in any case, supported by the technical progress 

it fosters. As science evolved along the last few decades, powerful and unprecedented 

computational resources have emerged, allowing for scientific knowledge and scientific 

curiosity to expand even further. Therefore, the model to develop has also an underlying 

technical and computational essence: scientific curiosity promotes the creation of 

progressively more powerful computational techniques. These powerful tools allow, in 

turn, for scientific curiosity to reach areas of knowledge of increasingly difficult access 

for the human mind and areas one could not imagine to be possible to approach in 

previous stages of scientific development. As computational tools become further and 

further sophisticated curiosity will necessarily follow the evolution of techniques. 

 

3. Research Dynamics 

3.1 The Science Frontier 

Let Qt  be the finite set of scientifically meaningful unsolved or open questions that the 

research community is aware of at time period t  t0 , t0  1, . . . A question Qt0  T, t0 

Qt  is a scientific problem formulated at date t  t0  and under scrutiny at period 

t  t0  T, T  0,1, . . . At t  t0 , an at most countable set of mutually exclusive possible 

answers At0 , t0  exists associated with each question Qt0 , t0 . Scientists will search for 

the single element of At0 , t0  that delivers the right answer to the research question. The 

probability of discovering the correct answer when undertaking a scientific experiment at 

t  t0 , which will be designated as probability of success, is denoted by pt0 , t0 . The 

probability of failure is, thus, qt0 , t0  1  pt0 , t0 . 

At the formulation date, researchers will have the opportunity of undertaking an 

unspecified number of experimentation rounds k   . These research rounds are 

Bernoulli trials, i.e., they are modeled as a sequence of independent trials of an 

experiment that has exactly two possible outcomes (success and failure), and where the 
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probability of success is the same for every trial.3 In this context, a geometric distribution 

is brought into the analysis; this is a discrete distribution that indicates the number of 

experiments that are necessary to obtain the first success. The cumulative distribution 

function (cdf) of the geometric distribution, which represents the probability of obtaining 

a successful result in trial k or in a trial previous to k, is Fk,qt0 , t0  1  qt0 , t0k . 

The science frontier will be defined, in this environment, as the probability of not having 

achieved success after k trials, i.e.,  

 

Gk,qt0 , t0  1  Fk,qt0 , t0  qt0 , t0k   #   
 

(1) 

 

Assuming a large number of scientific questions formulated or activated at t  t0 ,  

Gk,qt0 , t0  has a second interpretation; it also stands for the percentage of scientific 

questions that remain still unsolved after k rounds of experimentation. Fig.1 portrays the 

science frontier for three different values of the probability of success per experiment. 

The figure allows to visualize the intuitive result that a lower probability of failure (a 

higher probability of success) pulls the frontier downward, meaning that more scientific 

questions receive a correct answer after some number of experimentation rounds or 

Bernoulli trials. 

 

 
3 Modelling research rounds as Bernoulli trials implies that each scientific experiment is independent of 

the previous one. Obviously, this is a strong assumption that overlooks incremental learning that may come 

from failed trials; after all, in science, as in many other aspects of life, mistakes and failures often lead us, 

sooner or later to the right answer. In other circumstances, wrong solutions may deviate the researcher from 

success in a way that compromises further experiences. The independence assumption directs us, implicitly, 

to a convenient offsetting scenario: wrong answers produce some learning but also have a dismantling 

effect that together, in our framework, make the subsequent experience not to depend neither positively or 

negatively from the one that preceded it. 
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Fig.1. Science frontier (p  0.015 , p  0.020 , p  0.025).  

 

3.2 Moving Frontiers 

At the beginning of period t  t0  1 , a share 1  Gk,qt0 , t0  of scientific challenges 

raised at t  t0  has been solved, but a percentage Gk,qt0 , t0  remains to be resolved. 

The geometric distribution is memoryless, what signifies that if no change is observed on 

the probability of success from one period to the next, then researchers will be confronted 

with exactly the same science frontier in period t  t0  1  relatively to the one faced at 

t  t0 . However, one might conceive a scenario where the probability of success changes 

as the result of a variation in the level of the attention given to each scientific problem. 

Let wt0 , t0  0 , a given value, be the attention attributed to a question Qt0 , t0  and let  

wt0 , t0  be the change on attention from period t  t0  to period t  t0  1 . The 

variation in attention is assumed to occur, in the proposed setting, at constant rate   
,4  

 

 
4 The exogeneity and constancy over time of parameter   is an analytically convenient simplifying 

assumption that deserves some reflection. By assuming a constant  , one considers a mechanical process 

through which scientific challenges gain (  0), maintain (  0) or lose (  0) relevance in the mind 

of scientists. The reasons why one of these options will prevail and persist over the others can be of various 

natures. Scientific problems might be perceived as stimulating challenges that researchers desire to explore 

further and further or, in opposition, the systematic failure in finding convincing solutions for research 

questions may lead researchers to progressively abandon such questions in favor of other challenges (e.g., 

if systematic attempts to travel to Mars are failed, the attention of scientists and engineers may relocate 

elsewhere). 
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wt0 , t0    wt0 , t0   #   
 

(2) 

 

The probability of failure at t  t0  1  will be defined as qt0 , t0  multiplied by a term 

representing the fall (increase) in the probability of failure when attention increases 

(falls), i.e., 

 

qt0  1, t0  qt0 , t0  qt0 , t0wt0,t0   #   
 

(3) 

 

Given the cdf, the same kind of behavior will characterize the motion of the science 

frontier, 

 

Gk,qt0  1, t0  Gk,qt0 , t01wt0,t0   #   
 

(4) 

 

Equation (4) indicates that the science frontier may remain unchanged from one period to 

the next, when   0 ; for   0 , the increase in attention will make the science frontier 

to contract towards the origin, while   0  represents a scenario of decreasing attention, 

implying an outward shift in the science frontier G . 

At the end of period t  t0  1 , after k  Bernoulli trials are again implemented, one knows 

that a share 1  Gk,qt0  1, t0  of the questions needing answer at t  t0  1  have 

been effectively answered in this period, while the remaining share, Gk,qt0  1, t0 , 

requires eventual further investigation in the next period. Therefore, if Qt0  represents 

the number of activated questions at t  t0 , then, after t  t0  1 , the number of already 

solved scientific mysteries is 

 

At0  1  Qt0  1  Gk,qt0 , t0  Gk,qt0 , t0  1  Gk,qt0  1, t0

 Qt0  1  Gk,qt0 , t0  Gk,qt0  1, t0   #   
 

 

(5) 

 

The number of questions still waiting for a successful response amounts to 

 

Qt0  At0  1  Qt0  Gk,qt0 , t0  Gk,qt0  1, t0   #   
 

(6) 
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The above reasoning applies as well to all the subsequent time periods. Thus, one 

considers the following general rules for the evolution of attention and for the motion of 

the science frontier, 

 

wt0  t  1, t0  wt0  t, t0, wt0 , t0 given,   #   
 

(7) 

 

Gk,qt0  t  1, t0  Gk,qt0  t, t01wt0t,t0, wt0 , t0, qt0 , t0 given   #   
 

(8) 

 

Through recursive substitution, it is straightforward to obtain the solution of the 

difference equation (8), which might be displayed under the form 

 

Gk,qt0  T, t0  Gk,qt0 , t0
exp 0

T1
lna  

, T  0   #   
 

(9) 

with a  1  1  wt0 , t0 . 

Equation (9) represents the share of questions raised at moment t  t0  for which a correct 

solution has not yet been discovered after T periods of time. From this solution, one 

extracts the following result, 

 

Proposition 1. Regardless of the sign of the parameter representing the growth rate of 

attention ( ), the number of questions that are activated at period t  t0  and that remain 

to be solved in the long-term converges to zero. 

Proof See appendix ◼ 

 

Under an infinite horizon, in the proposed setting, every scientific challenge posed to 

researchers at some initial period will end up by getting an answer, what is a direct 

consequence of the attention that continues to be given to the questions period after period 

until a solution is met, independently of the upward or downward trajectory followed by 

the allocated attention (i.e., as long as some focus is put into a research challenge, there 

will always be a positive probability of success). Obviously, the convergence towards the 

steady-state of zero unsolved problems will be faster when the attention is increasing than 

in the opposite circumstance. Fig. 2 illustrates this reasoning. 

 

given 

given 
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Fig.2. Trajectories of unanswered questions 

(  0.05 ,   0 ,   0.05 ; k  5 ; wt0 , t0  1 ; qt0 , t0  0.99 ; Qt0  1). 

 

In the setting under assessment, the number of answered questions at date t  t0  T  is 

presentable as  

 

At0  T  Qt0  1  Gk,qt0 , t0
10

T1
exp 0


lna  

  #   

 

(10) 

Evidently, 
T
lim At0  T  Qt0,   . 

 

3.3 Vintages of Scientific Challenges 

In the previous subsection, the dynamics of science was approached taking into account 

solely the questions activated at the initial date. In practice, new research challenges are 

likely to emerge in the minds of researchers, driven by curiosity, with a systematic 

cadency, implying that new scientific problems might presumably erupt at every date 

from t  t0  to the assumed time horizon. 

To address the systematic emergence of new questions start by assuming the availability 

of a constant stock of attention: W  0,t . The constant stock of attention assumption is 

an essential element of the analysis. Although the attention attributed to scientific issues 

has historically grown over time, our argument in this context is that it can be interpreted 

as an exhaustible resource: there are limits to the attention that can be allocated to research 

questions, both in terms of the number of individuals assigned to scientific quests and in 

terms of the time and effort each person, individually, can associate to the process of 
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discovery. An alternative hypothesis, perhaps more realistic, would be to assume an 

increasing stock of attention subject to diminishing returns; however, this will not 

produce any significant change regarding the long-term results to be obtained. The 

assumption of a constant stock of attention is later relaxed in order to compare the 

implications of both scenarios (without and with growth of the attention endowment). 

Given the stock of attention, and the attention required to seize each question at t  t0 , 

wt0 , t0 , the number of activated questions at the initial period will be endogenously 

determined: Qt0  W

wt0,t0
. The scientific community is able of solving 

At0  Qt0  1  Gk,qt0 , t0  questions, potentially freeing a part of the available 

attention to new challenges that may emerge in the next period. 

At t  t0  1 , Qt0  Gk,qt0 , t0  questions of the first vintage remain to be 

answered. Let the attention needed to answer all questions transferred from t  t0  to 

t  t0  1be represented by Wt0  1, t0 . This variable will correspond to the number 

of questions requiring attention after not being solved at t  t0  times the attention that 

each one will receive at t  t0  1 , i.e., wt0  1, t0  1    wt0 , t0 ,  

 

Wt0  1, t0  Qt0  Gk,qt0 , t0  wt0  1, t0   #   
 

(11) 

 

The evaluation of the allocation of attention on the second date requires separating the 

different cases arising from the different signs parameter   may take. In this subsection, 

we briefly look at the simplest case, i.e.,   0 , and leave the cases of concentrated 

attention and dispersed attention to the next subsection. 

Under   0 , the attention required to approach at t  t0  1  the scientific questions 

raised at t  t0 , is the product between the stock of attention and the amount of questions 

that remain to be successfully answered, i.e., Wt0  1, t0  W  Gk,qt0 , t0 . 

Consequently, a level of attention Wt0  1, t0  1  W  1  Gk,qt0 , t0  is now 

available for the introduction of new questions. The number of new interrogations that is 

activated will be Qt0  1, t0  1  Qt0  1  Gk,qt0 , t0 . As it should be 

evident, the number of challenges that will be available to explore at t  t0  1  is 

identical to the respective initial number, 

 

Qt0  1  Qt0  Gk,qt0 , t0  Qt0  1, t0  1  Qt0   #   
 

(12) 

 

In this straightforward setting, where no distinctive feature separates questions activated 

at one period or the next, the number of questions to address at each time period will be 

exactly the same. As a consequence, science will asymptotically stop growing in the long-
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term; the reason is that at each period a same stock of questions is solved, 

At  Qt0  1  Gk,qt0 , t0 , leading to an accumulated number of solved 

questions of At0  T  T  1  Qt0  1  Gk,qt0 , t0 . The growth rate of AT  

is 

 


A
 1

T  1
,   #    

(13) 

a value that converges to zero as T goes to infinity. 

 

 

3.4 Concentrated Attention vs Dispersed Attention 

Although straightforward to analyze, case   0  comprises no noteworthy outcome: in 

each period, a given quantity of science challenges is solved, freeing resources to 

approach other challenges that receive exactly the same attention as those that were 

successfully approached, what extinguishes, in the long-run, the ability of the scientific 

knowledge to continue growing. In this subsection, we look at the alternative settings, 

namely the ones in which the scientific community, when confronted with unsuccessful 

research experiments, increases the attention allocated to already existing questions (

  0) or, alternatively, decreases it (  0). 

Consider case   0 . In this case, equation (11) encloses three different situations, 

namely the following: 

1) The attention available is equal to the attention required to approach the questions that 

were passed on from the first period to the next, W  Wt0  1, t0 . This scenario occurs 

when condition Gk,qt0 , t0  1    1  is satisfied. All questions ignited at t  t0

, which have not received a successful answer in that period, are again addressed at 

t  t0  1 , but no attention is left to confront any other challenges. Analytically,  

 

Qt0  1, t0  Qt0  Gk,qt0 , t0 
Qt0
1  

  #   
 

(14) 

 

2) The available stock of attention falls short of the required attention to address 

unanswered questions of the first vintage, W  Wt0  1, t0 . This condition is equivalent 

to Gk,qt0 , t0  1    1 . Now, some of the questions activated at t  t0  and that 

have not been successfully answered in the initial date, have to be discarded. The number 

of questions activated at t  t0  that will be addressed at t  t0  1  is derived from 

constraint 
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W  Qt0  1, t0  1    wt0 , t0   #   
 

(15) 

 

Rearranging and recalling that W  Qt0  wt0 , t0 , 

 

Qt0  1, t0 
Qt0
1  

  #   
 

(16) 

 

It is straightforward to confirm that, in this setting, Qt0  1, t0  Qt0  Gk,qt0 , t0

, since this is equivalent to 1

1
 Gk,qt0 , t0 , which is the assumption underlying the 

current situation. The number of discarded questions initially activated is easy to identify: 

 

Qt0  Gk,qt0 , t0  Qt0  1, t0 
Qt0
1  

Gk,qt0 , t0  1    1   #   
 

(17) 

 

which is a positive value. Note also, in this case as in the previous one, that 

Qt0  1, t0  1  0 . 

3) The available stock of attention exceeds the required attention to address all questions 

yet to answer from vintage t  t0 , i.e., W  Wt0  1, t0 . Now, 

Gk,qt0 , t0  1    1   and researchers will be not only able to fully address the 

set of questions that have passed from t  t0  to t  t0  1 , but novel questions can be 

activated. The relevant constraint is, in this circumstance, 

 

W  Qt0  Gk,qt0 , t0  1    wt0 , t0  Qt0  1, t0  1  wt0  1, t0  1   #   
 

(18) 

 

Assuming that new questions receive exactly the same attention as the ones from the 

previous vintage, i.e., wt0  1, t0  1 wt0  1, t0  1    wt0 , t0 , and solving 

the equation with respect to Qt0  1, t0  1 , 

 

Qt0  1, t0  1  Qt0 1
1  

 Gk,qt0 , t0   #   
 

(19) 

 

The total number of questions being addressed after the end of period t  t0  1  is  
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Qt0  1, t0  Qt0  1, t0  1 
Qt0
1  

  #   
 

(20) 

 

as in the other two scenarios. 

The above analysis might be continued for t  t0  2 , and then extrapolated for 

subsequent periods of time, as well as for case   0 . The main outcome emerging from 

such computation is that independently of the relation between available and required 

attention and independently of the sign of   , the number of activated questions will be, 

at every future date  t  t0  T ,5 

 

Qt0  T 
Qt0

1  T
  #   

 

(21) 

 

suggesting that in each period the following number of scientific challenges is 

successfully approached, 

 

At0  T 
Qt0

1  T
 1  Gk,qt0  T, t0   #   

 

(22) 

 

The accumulated number of answered questions, in turn, is 

 

At0  T  Qt0 
T

t0

 1  Gk,qt0  t, t0
1  t

  #   

 

(23) 

 

To assess the long-term progress of scientific knowledge one evaluates, in the following 

section, the growth rate of the accumulated number of scientific challenges successfully 

answered, as depicted in (23). 

 

 
5
 For reasons of space and fluidity of exposition, we refrain from presenting the complete derivation. This 

will be provided by the author to the interested readers upon request. 
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4. Balanced Growth 

4.1 Dispersed Attention and Sustained Growth 

The characterization of the dynamics of the science frontier has allowed to calculate the 

number of scientific challenges that, at period t  t0  T , are considered successfully 

solved by the scientific community. In the absence of knowledge obsolescence, such 

number corresponds to value At0  T  in (23). As emphasized, this state of science is 

given by the same expression regardless of how the attention attributed to questions 

evolves over time, i.e., regardless of the sign of parameter  . 

However, it is precisely the sign of   that will be decisive to determine how science grows 

in the long-run. In particular, it is straightforward to prove that concentrating attention or 

maintaining it at the same level over time (  0) will lead to a long-term steady-state of 

zero growth, while dispersing attention (  0) generates a balanced growth path (BGP) 

of sustained growth for science, i.e., the number of successfully approached scientific 

challenges will grow, after the transient phase as been surpassed, at a constant rate over 

time.6 

We associate scenario   0  to scientific curiosity, in the sense that curious researchers 

will disperse their attention to progressively more subjects of analysis, and this works, 

without the need for any auxiliary processes, as an engine of persistent positive growth. 

On the contrary, if researchers further insist in trying to answer the same old questions 

that were not yet capable of providing a successful solution, this will be synonymous of 

growth exhaustion, when a fixed endowment of attention is taken. 

To obtain the above characterized outcome, one needs to compute the growth rate of 

At0  T  and to evaluate it when T→. 

 

Proposition 2. Let the state of science correspond, at a given date, to the so far 

accumulated level of successfully approached scientific challenges. For   0 , in the 

long-term the state of science converges to a constant level; for   0 , sustained growth 

is evidenced, i.e., the long-run growth rate of the state of science is a constant positive 

value. 

Proof See appendix ◼ 

 

 
6
 This result is the corollary of our 'blind' intertemporal distribution of attention, which does not consider 

any explicit consequences of how attention is allocated. For instance, it is reasonable to infer that the 

successive escape forward implies costs, regarding knowledge accumulation, which probably have a 

negative impact on the ability to solve future problems. Those costs could be equated by bringing an 

additional parameter to the analysis. In such case, the eventuality of growth would be determined by the 

net effect of attention dispersion (the gain in approaching new challenges against the loss of relocating 

attention from open questions. 
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In Fig. 3, the three circumstances are depicted. Specifically, by considering   0.05 , 

  0 , and   0.05 , it is visible that the first two cases imply time trajectories of A  

that converge to zero, while dispersed attention triggers convergence to a positive value; 

this value is derived in the proof of proposition 2 and corresponds to 

 


A
  wt0  T, t0

wt0  T  1, t0
  

1  
  #   
 

(24) 

 

 

Fig. 3. Time trajectories of the accumulated number of answered questions 

(  0.05 ,   0 ,   0.05; k  5 ; wt0 , t0  1 ; qt0 , t0  0.99 ; Qt0  1 ). 

 

The figure makes it visible how scientific curiosity, interpreted as the interest for 

everything and the quest for never ending new challenges to human understanding, 

attributes to science the ability to reinvent itself over time. In a growth perspective, the 

figure highlights the potential of the science frontier model in accounting for growth 

diversity: a same framework is capable of generating zero long-term growth and positive 

constant long-term growth in a fixed endowment economy. Furthermore, by observing 

the graph, one realizes that in this specific case a tension exists between short-run and 

long-run growth: while dispersing attention is the only option for attaining a BGP of 

positive growth, in the initial periods science grows more when attention is concentrated; 

this might provoke a confrontation between the ultimate goal of expanding scientific 

knowledge in a perpetual basis and the immediate rewards that may come from a faster 

growth in the short-run. 

 

 

 

-0,02

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

time 

Â 

Â (d=0.05) 

Â (d=-0.05) 

Â (d=0) 



Revista de Ciências da Computação, 2020, nº15 

 

77 

 

4.2 Knowledge Obsolescence, Growing Attention and the Value of Innovation 

The result for the BGP of scientific knowledge is potentially changed once we consider 

some incremental assumptions. Three of such meaningful assumptions are explored in 

this subsection for the relevant endogenous growth case,   0 . 

First, consider knowledge obsolescence, such that any discovery made at period 

t  t0  T  worth less at period t  t0  T  1 . Let   0,1  be the rate of obsolescence; 

at the end of period t  t0  1 , the value of the already solved questions is: 

 

Vt0  1  Qt0  1    Gk,qt0 , t0  1
1  

 Gk,qt0  1, t0   #   
 

(25) 

 

And, expanding for the whole set of time periods, 

 

Vt0  T  Qt0 

t0

T

 1  Tt 
1  Gk,qt0  t, t0

1  t
  #   

 

(26) 

 

Second, abandon the constant attention endowment assumption and consider that the 

stock of attention grows at a constant positive rate,  : Wt  1  1  Wt . The 

increasing available attention will allow to answer additional questions as time unfolds; 

for instance, in t  t0  1 , the constraint on the number of new activated problems will 

be  

 

1  W  Qt0  Gk,qt0 , t0  Qt0  1, t0  1  1    wt0 , t0   #   
 

(27) 

 

meaning that 

Qt0  1, t0  1  Qt0 
1  
1  

 Gk,qt0 , t0   #   

 

(28) 

 

and that 

Qt0  Gk,qt0 , t0  Qt0  1, t0  1 
1  
1  

 Qt0   #   
 

(29) 

 

Extrapolating for multiple time periods,  
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Qt 
1  
1  

t

 Qt0   #   

 

(30) 

 

and the number of answered questions accumulated at period t  t0  T  will be  

 

Vt0  T  Qt0 

t0

T

 1  
1  

t

 1  Gk,qt0  t, t0   #   

 

(31) 

 

Finally, consider that questions from a newer vintage are more valuable than questions of 

older vintages. Let the additional value, from a vintage to the next, be given by parameter 

v  0 . This implies that, from t   t0  to t   t0  1 , 

 

Vt0  1  Qt0  Gk,qt0 , t0  1  v
1  

 Gk,qt0  1, t0   #   
 

(32) 

 

and, for t  t0  T , 

 

Vt0  T  Qt0 

t0

T

 1  v
1  

t

 1  Gk,qt0  t, t0   #   

 

(33) 

 

Equations (26), (31) and (33) all supply the value of scientific knowledge at point in time  

t  t0  T , with the value of science measured with respect to all current and previous 

scientific challenges successfully approached; BGP results are as follows, 

 

Proposition 3. Assume   0 . In the presence of knowledge obsolescence, increasing 

attention and increasing value of new problem vintages, the long-term growth rate of 

scientific knowledge in the science frontier dynamic model becomes 

 


V


1  1  v
1  

 1   #   
 

(34) 

Proof See appendix ◼ 
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Result (34) is a generalization of the growth rate already derived in the dispersed attention 

case. In particular, in the absence of attention growth (  0) and increasing value of 

innovation (v  0), we are back at growth rate (24). Thus, an immediate corollary of the 

result in proposition 3 is that knowledge obsolescence exerts no effect on long-run 

growth; independently of how fast old scientific knowledge loses value, this does not 

temper with how science, translated in the value of correctly answered questions, 

continues to accumulate in the long-term. 

Therefore, the value of science grows over time, after the transient phase has been 

overcome, at a positive rate that depends on three entities: the rate of attention dispersion, 

the rate of change of the stock of attention, and the growth rate of the value of solved 

problems given the time period in which they are activated. Although the last two are 

obvious candidates to perpetuate growth, our main point is that they are not indispensable 

to achieve this result, since the dispersion of attention fulfills, per se, the same objective. 

 

4.3 Entropy and Curiosity 

Technical literature on curiosity typically establishes a bridge between curiosity and 

entropy. This is, explicitly, the case of the study by Golman and Loewenstein (2015), who 

design a utility function that contemplates both preferences over material gains and 

preferences over the value of information. In this specification of utility, the entropy of 

the probability distribution over possible answers enters as an argument of the function. 

The existence of many probable answers signifies a large level of entropy, while, on the 

other extreme, zero entropy is synonymous of complete certainty concerning the correct 

answer for a given problem. The preference of the agent will be for clarity, i.e., for less 

uncertain possible outcomes; therefore, a low value of entropy will benefit the agent in 

terms of her expected utility, implying that entropy arises in the utility function preceded 

by a minus sign. 

The above reasoning suggests that curiosity and entropy are siamese twins. Curiosity does 

not exist in a state of zero entropy; however, it may acquire pathological levels when the 

certainty about the probable outcome is close to zero and, thus, entropy is very high. 

Furthermore, curiosity arises as a natural mechanism to counteract uncertainty, i.e., 

curiosity is a healing device against entropy. 

The close link between curiosity and entropy applies, in the context of research dynamics, 

roughly in the same way as in any other context. Scientists search for solutions for 

activated problems, trying to fill in the perceived information gaps, in order to lower 

entropy. However, the final goal, as we have discussed in precedent sections, is not to 

reach a state of global zero entropy: scientists do not solve problems with the intent of 

attaining the definitive answers that would lead science to its final undisputable state. On 

the contrary, the curiosity of researchers leads them to encounter solutions to problems in 

order to be possible, afterwards, to formulate and approach other new enigmas. Therefore, 

while the objective of answering a research question is indeed to suppress the entropy 

associated with it, the ulterior goal is to open up the possibility for new questions to 

emerge. Because individuals are curious by nature, as the entropy associated with some 

class of problems eventually falls, new avenues to address novel highly entropic issues 

are opened. 
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Recover the science frontier setup, and remark that, in the case of the geometric 

distribution, the entropy associated with a question raised at date t  t0  is 

 

Ht0  t, t0 
qt0  t, t0 log

2
qt0  t, t0  1  qt0  t, t0 log

2
1  qt0  t, t0

1  qt0  t, t0
  #   

(35)

 

 

The absence of any change in the level of attention attributed to each question (  0) 

signifies no movement on the science frontier, what is the same as saying that the 

probability of failure remains constant over time. In this circumstance, the level of entropy 

is immutable. The case of concentrated attention (  0) is synonymous of a decreasing 

probability of failure that, in the long-run, converges to zero; hence, when previously 

activated questions receive progressively more attention, entropy will fall from its initial 

value Ht0 , t0  towards zero. Finally, under dispersed attention (  0), as the science 

frontier of each research problem expands outwards, the probability of failure increases 

and so it does entropy. These results are the straightforward outcome of the direct relation 

between probability of failure and entropy, given the following derivative sign, 

 

dHt0  t, t0
dqt0  t, t0


Ht0  t, t0

1  qt0  t, t0
 0   #   

 

(36) 

 

The relation between attention assigned to a research question and the level of entropy 

becomes evident: more (less) attention associated to a particular scientific problem will 

imply a fall (a rise) in the respective entropy level. Because attributing more attention to 

a problem is an indication that scientists are more curious about it, we also establish, in 

this way, the highlighted link between curiosity and entropy. 

More important than assessing the entropy of a single research question, is to evaluate the 

time trajectory of overall entropy, given the whole set of activated scientific challenges. 

Independently of the sign of  , the total entropy at a time period t  t0  T  is, given the 

number of activated problems, (21), 

 

Ht0  T  Qt0  T  Ht0  T, t0


Qt0

1  T
 Ht0  T, t0   #   

 

(37) 

 

In the long-term, given that Ht0  T, t0  converges to a constant value regardless of the 

trajectory of attention assigned to each problem, the growth-rate of entropy is 
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straightforward to compute and it coincides with the growth rate of the number of 

answered questions as  T→, i.e., H  /1   . 

The above result, understood as sustained growth in entropy, is confined to the case   0

. When   0 , by the same formula, entropy converges to a constant long-term level, 

while if   0  we already know that  
T
lim Ht0  T, t0  0   and, thus, no entropy change 

will occur in the long-run scenario. 

Again, it is the dispersed attention case that is worth accentuating. By disseminating 

attention across a progressively larger amount of scientific problems, the research 

community feeds a never ending process of emergence of new questions. With the growth 

in the number of activated questions, overall entropy will also grow and curiosity will be 

as well an ever expanding attribute of the mission of science. 

 

 

5. Extensions 

5.1 Discrete Distributions of the Same Family 

In this subsection, the science frontier analysis is expanded in order to allow for 

generalized forms of the geometric distribution. Namely, we will consider the 

exponentiated-exponential-geometric distribution (EEGD), approached in Alzaatreh et 

al. (2012) and the Kumaraswany-geometric distribution (KGD), discussed in Akinsete et 

al. (2014). They are both extensions of the geometric distribution and include this as a 

particular case. Given the cdf of each of the mentioned distributions, the respective 

science frontiers are, at the initial date: 

 

EEGD : Gk,qt0 , t0  1  1  qt0 , t0k ,   0   #   
 

(38) 

 

KGD : Gk,qt0 , t0  1  1  qt0 , t0k  , ,  0   #   
 

(39) 

 

Naturally, if     1 , in both cases one returns to the geometric distribution. 

Parameters   and   shape the form of the distribution but maintain the same underlying 

philosophy: a given probability of failure will determine how many questions will remain 

to be answered after k Bernoulli trials. Fig. 4 illustrates the position of the science frontier 

for each of the three distributions and for specific values of parameters. In particular, the 

probability of failure is set at qt0 , t0  0.99 , and the values of the distributions' 

parameters are   0.5 , for the EEGD, and     2.5 , for the KGD. By shaping the 

location of the science frontier on the (k,G ) referential, parameters  and  determine 

the success of the experimentation rounds and, therefore, they have a fundamental role 

concerning the efficiency of research. Note, for instance, taking into account the 

represented frontiers, that after 10 rounds the following figures are obtained: for the GD, 
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approximately 9.56% of the posed problems have been successfully approached; this 

number increases to 30.92% in the case of the EEGD distribution, and falls to 0.71% for 

the KGD. Consequently, although built under a same general structure, the three 

distributions tell considerably different stories about the efficiency of scientific research. 

 

 

Fig.4. Science frontier, for different geometric distributions 

(qt0 , t0  0.99 ; GD:     1 ; EEGD:   0.5,  1; KGD:     2.5 ). 

 

Regardless of the different positions of the science frontier in the above examples, the 

dynamics implied by the evolution of the attention attributed to each research question do 

not depart from what was stated in previous sections concerning the geometric 

distribution. Note, in the first place, that the case of unchangeable attention,   0 , 

continues to determine, for all positive  and  , that the science frontier will suffer no 

displacement over time. In the most general KGD form, the difference equation for the 

change in the distribution is such that 

 

Gk,qt0  t  1, t0  1  1  qt0  t, t0  qt0  t, t0wt0t,t0 k  
  #   
 

(40) 

 

Under   0 ,  

Gk,qt0  t  1, t0  1  1  qt0  t, t0
k  

 Gk,qt0  t, t0   #   
 

(41) 
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and so the frontier does not change position from one period to the next; again, the 

memoryless property is present: independently of the number of Bernoulli trials 

undertaken in the precedent time period, the distribution maintains its shape in the current 

period. 

Changes in attention, both in the direction of concentration or dispersion, will move the 

frontier. The qualitative results are those already known: allocating additional attention 

to each question will pull the frontier inwards, as the probability of failure falls to zero; a 

steady-state G  0  is necessarily reached; if the attention is dispersed, the frontier 

moves outwards until reaching some long-term locus such that Gk,qt0 , t0  G  1

. Long-run results, regarding the growth rate of correctly answered science puzzles, will 

be, given the characterized motion of the science frontier, of a same qualitative nature of 

those found for the geometric distribution. In fact, changing the shape of the distribution 

will affect transitional dynamics but it will be innocuous in what respects the BGP result. 

Fig. 5 displays the trajectories followed by the growth rate of answered questions for the 

three different distributions, assuming the endogenous growth case of dispersed attention. 

Parameter values employed to represent the GD, EEGD and KGD distributions are the 

same as those used to draw the frontiers in Fig. 4. Although disparities between 

trajectories are evident in the transient phase, they are dissipated over time. 

 

 

Fig. 5. Trajectories of the growth rate of answered questions - geometric, EEGD and KGD 

distributions 

(  0.05;  k  5 ; wt0 , t0  1 ; qt0 , t0  0.99 ). 

 

5.2 Continuous-Time 

The science dynamics framework is, in what follows, adapted to a continuous-time 

scenario. Bernoulli trials and the geometric distribution continue to characterize, as 

before, the process of scientific creation in a particular time period t, but in this new 
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scenario time flows continuously. Consider, once more, rate   ,  and now take time 

intervals of a given length h, such that  

 

wt  h, t0  wt, t0  hwt, t0   #   
 

(42) 

 

The science frontier will evolve, over time, as in (4), 

 

Gk,qt  h, t0  Gk,qt, t01hwt,t0   #   
 

(43) 

 

The corresponding rate of change is 

 

Gk,qt  h, t0  Gk,qt, t0
Gk,qt, t0h


Gk,qt, t0hwt,t0  1

h
  #   

 
(44) 

 

Taking the definition of derivative, one transforms (44) into an ordinary differential 

equation (ODE), by noting that 

 

Gk,qt, t0
t

 1
Gk,qt, t0


h0

lim
Gk,qt, t0hwt,t0  1

h
  #   

 

(45) 

 

an expression that is equivalent to  

 

.
lnGk,qt, t0 wt, t0lnGk,qt, t0   #   

 
(46) 

 

The growth rate of attention is, in the continuous-time framework,  

 

.
wt, t0
wt, t0

    #   
 

(47) 

which has, as solution, 
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wt, t0  wt0 , t0  expt   #   
 

(48) 

 

Replacing the value of attention, given by (48), into the research frontier ODE, (46), it is 

straightforward to compute the solution of the differential equation, which will be given 

by the following expression, 

 

lnGk,qt, t0  lnGk,qt0 , t0  expwt0 , t0  expt  1   #   
 

(49) 

 

or, suppressing the logs, 

 

Gk,qt, t0  Gk,qt0 , t0expwt0,t0expt1    #   
 

(50) 

 

Solution (50) furnishes important guidance concerning the dynamics of the science 

frontier. Observe that if   0 , then Gk,qt, t0  converges to zero: G  0 ; if   0 , 

then Gk,qt, t0  Gk,qt0 , t0  in the long-term, i.e., G  Gk,qt0 , t0 ; and if 

  0 , then  
t
lim Gk,qt, t0 Gk,qt0 , t0expwt0,t0 ; because 

0  expwt0 , t0  1 , the long-term science frontier, G , will be such that 

Gk,qt0 , t0  G  1 . Comparing these results with the ones obtained in discrete 

time, it is straightforward to encounter the respective similarities. Fig. 6 displays a phase 

diagram that characterizes the evolution of the science frontier, given the motion of 

attention. Starting from an initial pointwt0 , t0;Gk,qt0 , t0 , three possibilities are 

feasible: i) attention remains constant over time, and so does the science frontier; ii) 

attention grows positively over time, implying that the frontier converges to zero; iii) 

attention attributed to each individual question falls over time, which means a 

convergence to a given frontier position G , which we find somewhere above the initial 

frontier location. 
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Fig.6. Phase diagram - dynamics of the science frontier. 

 

Also as in the discrete-time case, despite the different positions of the science frontier in 

the BGP given the value of  , the long-term scenario will be such that all questions of 

the first vintage have been answered. The number of questions that remain to be answered 

at t  t0  T  is 

Qt  Qt0  Gk,qt0 , t0 0

T

expwt0,t0expt1 dt

  #   
 

(51) 

 

Regarding that 

 

T
lim

0

T

 expwt0 , t0  expt  1dt  ,     #   

 

(52) 

 

one concludes that the number of unanswered questions falls to zero, and therefore all 

questions end up with an associated successful answer. 

An analogous procedure of analysis to the one adopted in the discrete-time version of the 

model conducts to the following aggregate values: 

i) Number of questions to answer at moment t  t0  T , 
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Qt 
Qt0

expT
  #   
 

(53) 

 

ii) Number of questions solved at time t  t0  T , 

 

At 
Qt0

expT
 1  Gk,qt0  T, t0   #   

 
(54) 

 

iii) Accumulated valued of solved problems at date t  t0  T ,  

 

At  Qt0  
0

T

1  Gk,qt0  t, t0
expt

dt   #   

 

(55) 

 

From (55), it is straightforward to arrive to the result in proposition 4. 

 

Proposition 4. The long-term growth-rate of the stock of successfully met scientific 

challenges is, in the continuous-time setting and assuming dispersed attention, 
A
 

. 

Proof See appendix ◼ 

 

The growth rate results in discrete-time and continuous-time are not exactly the same. In 

continuous-time, the BGP is characterized by a growth rate that coincides with the 

absolute value of the rate of change of attention assigned to scientific problems over time. 

While in discrete-time the growth rate is 
A
  wt0T,t0

wt0T1,t0
, the continuous-time analogue 

is, more plainly, 
A


.
wt,t0
wt,t0

. 

In parallel with the discrete-time case, the analysis can be extended to include knowledge 

obsolescence, attention growth and increasing value of innovations. Recovering the 

obsolescence rate   0,1 , the accumulated value of solved problems has 

correspondence in the following expression,  
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Vt  Qt0  
0

T

expT  t
1  Gk,qt0  t, t0

expt
dt

 Qt0  
0

T

1  Gk,qt0  t, t0
exp  t  T

dt   #   

 

 

(56) 

 

For the cases where a positive growth rate of attention,   0 , or an increasing vintage 

value, v  0 , are assumed, the accumulated levels of solved problems are, respectively, 

 

Vt  Qt0  
0

T

expt 
1  Gk,qt0  t, t0

expt
dt   #   

 

(57) 

and 

Vt  Qt0  
0

T

expvt 
1  Gk,qt0  t, t0

expt
dt   #   

 

(58) 

 

Under a same logic as the one adopted in the proof of proposition 4 to derive the growth 

rate of the sum of all successfully answered questions, it is straightforward to calculate 

the long-term growth rates for the modified structure of analysis. Again, the results 

display some similarities with discrete-time, 

i) Growth rate with knowledge obsolescence, 

.

Vt

Vt
    #   

 

(59) 

 

ii) Growth rate with a varying stock of attention, 

.

Vt

Vt
      #   

 

(60) 

 

iii) Growth rate with increasing value of new vintages, 
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.

Vt

Vt
 v     #   

 

(61) 

 

iv) Growth rate with a varying stock of attention and increasing value of new vintages,  

.

Vt

Vt
   v     #   

 

(62) 

 

6. Conclusion: Scientific Curiosity as Dispersed Attention 
Scientific curiosity knows no limits. Whenever a research question is successfully 

answered, a burst of new interrogations is likely to come to the surface and occupy the 

minds of human beings. Attention to scientific challenges may grow, but attention is, in 

fact, a scarce resource. Therefore, the doubt must be raised: how can one conciliate ever 

increasing unbounded curiosity with a constrained attention endowment? The paper 

furnishes a candidate explanation for this apparent paradox: by assuming a science 

frontier, constructed over a process of trial-and-error, it is straightforward to demonstrate 

that spreading attention over additional research challenges is all that is required for a 

result of sustained long-term growth to thrive. No increasing value of new science 

vintages or strong obsolescence of previous discoveries are essential in this process. 

Growth occurs just because of the dispersion over time of attention to new scientific 

objects. 

Two central ideas are worth highlighting from the undertaken analysis. On one hand, it 

served to contextualize curiosity in the reflection about the evolution of research and 

science. Although the notion of curiosity might be subject to various possible 

interpretations, in science it can be associated with the progressively wider interest in all 

conceivable objects in nature, society and abstract thinking. This increasing interest in 

everything that surround us is by itself, as discussed, an engine of everlasting science 

evolution; one does not need to allocate progressively more resources to science to 

observe sustained growth in scientific knowledge. On the other hand, the advanced 

arguments bring, as well, a significant result for economic growth theory, a result that is 

visible without ambiguities through the observation of the trajectories in Fig. 3: a same 

framework of analysis, considering a fixed attention input, is able to replicate, for 

different values of a single parameter, both the neoclassical and the endogenous growth 

outcomes; endogenous growth requires dispersed attention, while zero long-term growth 

is the outcome of concentrating attention or, at least, maintaining it at the starting point. 
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Appendix 

Proof of proposition 1 

The steady-state result, (9) under t→, might be scrutinized for each of the possibilities 

concerning the sign of parameter  . Define  

 

G 
T
lim Gk,qt0  T, t0   #   

 

(63) 

 

In case   0 , one immediately observes that a  1 ; hence,  

 

T
lim exp 

0

T1

lna   exp0  1   #   

 

(64) 

 

and, therefore, G  Gk,qt0 , t0 : no attention change signifies no movement of the 

science frontier (it perpetuates itself on its initial position). 
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If   0 , then a  explodes to infinity and  

 

T
lim exp 

0

T1

lna   exp     #   

 

(65) 

 

 

implying that G  0 , i.e., growing attention drives the system to a long-term state where 

the science frontier coincides with the origin in the k,G  referential. 

The third possibility,   0 , requires a finer examination. In this circumstance, observe 

the following about the evolution of term a ,  

 

a0  1  wt0 , t0  1   #   
 

(66) 

lim


a   1   #   
 

(67) 

a


 1   ln1  wt0 , t0  0   #   

 
(68) 

 

Hence, as  goes to infinity, a follows an increasing trajectory that converges to 1. Note 

that one must guarantee that a  is positive, what implies imposing condition  

 

wt0 , t0   1


  #   
 

(69) 

 

For 0  a  1 , it is true that lna  0,, and that limlna  0 . Also, as a 

consequence,  

 


0



lna   0   #   

 

(70) 

 

This last condition may imply one of two outcomes: the series might diverge to - or 

absolutely converge to a finite negative value. Convergence holds if the condition 
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imposed by the series ratio test is satisfied, i.e., the series 0


lna   converges if 

inequality L  1  holds, with L 

lim

lna 1 

lna  
. 

Applying the L'Hopital rule, 

 


lim

lna1 
lna 



lim

 lna 1 


 lna  




lim 1   a

a1
 1     #   

 

(71) 

 

Given that   0 , the limit is a lower than 1 value, i.e., L  1 , what proves convergence. 

Hence,  

 


0



lna   ;wt0 , t0   #   

 

(72) 

 

with ;wt0 , t0  a negative finite constant, for given values of the attention growth 

rate and of the initial level of attention. Consequently, 

 

T
lim exp 

0

T1

lna   exp;wt0 , t0  1   #   

 

(73) 

 

Therefore, in the case   0  we have Gk,qt0 , t0  G  1 , that is, whenever 

attention falls over time the share of unanswered questions, from those that remain 

activated, is higher in the long-run than in the initial state. 

Despite the diversity of long-term outcomes concerning the science frontier for the 

different signs of  , in all the three cases there will not remain any scientific problems to 

be solved in the steady-state. This is straightforward to confirm by noticing that for some 

t  t0  T  t0 , the number of questions raised at t  t0  yet to be addressed is the 

amount 

 

Qt  Qt0  Gk,qt0 , t0  Gk,qt0  1, t0 . . .Gk,qt0  T, t0

 Qt0  Gk,qt0 , t0
10

T1
exp 0


lna  

  #   
 (74) 
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Independently of the sign of the growth rate of attention parameter  , observe that  

 

T
lim 1 

0

T1

exp 
0



lna      #   

 

(75) 

 

This is a straightforward outcome for   0 . For   0 , the limit expression reduces to 

T
lim 0

T11 
T
lim T  , and for   1 , the result is similar, since 

 

T
lim 

0

T1

exp;wt0 , t0 
T
lim T  exp;wt0 , t0     #   

 

(76) 

 

Note that exp;wt0 , t0  is some constant in the interval (0,1). The zero unsolved 

questions at the steady-state result is, in this way, confirmed, since  

 

Qt  Qt0  Gk,qt0 , t0
  0   #   

 
(77) 

 

 

 

Proof of proposition 2 

Regardless of the sign of  , the stock of knowledge at date t  t0  T , measured by the 

accumulated number of successfully answered research questions, is given by expression 

(23). A BGP for the evolution of scientific knowledge corresponds to the trajectory 

followed by At0  T , as T tends to infinity. Therefore, to know the nature of the BGP 

one needs to compute the growth rate of A  between two consecutive periods, T and T+1. 

This is 
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
A


T1

t0

 1Gk,qt0t,t0

1t 
T

t0

 1Gk,qt0t,t0

1t

T

t0

 1Gk,qt0t,t0

1t

  #   

 

 

(78) 

 

Equivalently, 


A


1Gk,qt0T1,t0

1T1

T

t0

 1Gk,qt0t,t0

1t

  #   

 

 

(79) 

 

The above expression might be rearranged, 

 


A
 1

t0

T

 1Gk,qt0t,t0

1Gk,qt0T1,t0
 1  T1t

  #   

 

(80) 

 

and, finally, written as  

 


A
 1

1  
1

t0

T

 1Gk,qt0t,t0

1Gk,qt0T1,t0
 1  Tt

  #   

 

(81) 

 

To proceed, one needs to interpret the sum in the denominator of the expression. This 

sum can be separated into two terms, 

 

t0

T

 1  Gk,qt0  t, t0
1  Gk,qt0  T  1, t0

 1  Tt 

t0

t 1

 1  Gk,qt0  t, t0
1  Gk,qt0  t , t0

 1  Tt 

tt 

T

 1  Gk,qt0  t, t0
1  Gk,qt0  T  1, t0

 1  Tt   #   

(82) 
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where t’ corresponds to the point where, asymptotically, the transient phase of the 

evolution of G is complete and the BGP is attained. In this case, for an infinite T and a 

finite t’, the value 1  Tt  will be approximately zero, for any value of t, such that 

t0

t1

 1  Gk,qt0  t, t0
1  Gk,qt0  t , t0

 1  Tt  0   #   

 

(83) 

 

Next, recall, from the proof of proposition 1, that the science frontier converges to a long-

term constant value that depends on the growth rate of attention: 

 

  0 : G  0

  0 : G  Gk,qt0  t, t0,t  0,1, . . .

  0 : G  Gk,qt0 , t0exp;wt0,t0  Gk,qt0  t, t0, 1

  #   

 

(84) 

 

Thus, concerning the second term of the above equality, 

 

tt 

T

 1  Gk,qt0  t, t0
1  Gk,qt0  T  1, t0

 1  Tt 

tt 

T

 1  G

1  G  1  Tt



tt 

T

 1  Tt 

t0

Tt 

 1  t   #   

 

 

(85) 

 

The value of the geometric series will depend on the sign of  . For   0 ,  

 

t0

Tt

 1  t  T  t   1   #   

 

(86) 

and, therefore, 


A
 1

T  t   1
  #   
 

(87) 

 

As T→ , the growth rate will converge to zero. 
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For   0 , it is straightforward to notice that  

 

T
lim

t0

Tt

 1  t     #   

 

(88) 

 

what implies a long-term zero growth rate for scientific knowledge, also in this case. 

Finally, let us consider   0 . Now, 

 

t0

Tt

 1  t 
1  1  Tt1

   #   

 

(89) 

and 

T
lim

t0

Tt

 1  t   1


  #   

 

(90) 

 

Replacing this value into the growth rate, 

 


A
 1

1  
1

 1


  
1  

  #   

 

(91) 

 

Under dispersed attention, the BGP is characterized by a positive growth rate, that 

depends solely on the decreasing rate of attention given to approach scientific challenges 

over time. 

 

Proof of proposition 3 

The computation of the growth rate of accumulated knowledge with the new elements 

present in section 4.2 follows the same steps as the calculus of the growth rate for the 

original accumulated amount of scientific answers. Let us start by considering, as 

additions to the benchmark model, solely the presence of knowledge obsolescence. The 

growth rate of Vt  as defined in (26) is 
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
V


Qt0 

t0

T1

 1  T1t  1Gk,qt0t,t0

1t  Qt0 

t0

T

 1  Tt  1Gk,qt0t,t0

1t

Qt0 

t0

T

 1  Tt  1Gk,qt0t,t0

1t

  #   

(92) 

 

This expression is equivalent to 

 

V 

1Gk,qt0T1,t0

1T1
  

t0

T

 1  Tt  1Gk,qt0t,t0

1t

t0

T

 1  Tt  1Gk,qt0t,t0

1t



1Gk,qt0T1,t0

1T1

t0

T

 1  Tt  1Gk,qt0t,t0

1t

 

 1
1  

1

t0

T

 1Gk,qt0t,t0

1Gk,qt0T1,t0
 1  1  Tt

    #   

 

 

 

 

 

 

(93) 

 

As in the proof of proposition 2, we separate the sum in the denominator into two terms, 

thus distinguishing, asymptotically, between the transient phase and the long-term locus, 

 

t0

T

 1  Gk,qt0  t, t0
1  Gk,qt0  T  1, t0

 1  1  Tt



t0

t 1

 1  Gk,qt0  t, t0
1  Gk,qt0  T  1, t0

 1  1  Tt



tt 

T

 1  Gk,qt0  t, t0
1  Gk,qt0  T  1, t0

 1  1  Tt   #   

 

 

 

 

(94) 
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Suppressing the first term in the sum, and taking 1Gk,qt0t,t0

1Gk,qt0T1,t0
 1  for any t  t  , the 

expression simplifies to 

 

tt

T

 1  1  Tt 

t0

Tt

 1  1  t 
1  1  1  Tt1

1  1  1  
  #   

 

(95) 

 

The infinite horizon evaluation conducts to the outcome 

 

T
lim

t0

Tt

 1  t  1
1  1  1  

  #   

 

(96) 

 

Replacing in the growth rate expression, 

 

V  1
1  

1
1

111

    
1  

  #   

 

(97) 

 

The introduction of obsolescence, on its own, does not modify the original endogenous 

growth result. 

To obtain the long-run growth rate for the other two specifications of the model, a similar 

procedure must be adopted. The growth rates requiring evaluation are, respectively, 

 


V


Qt0 

t0

T1

 1

1

t
 1  Gk,qt0  t, t0  Qt0 

1

1

t
 1  Gk,qt0  t, t0

Qt0 

t0

T

 1

1

t
 1  Gk,qt0  t, t0

  #   

(98) 

and 
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
V


Qt0 

t0

T1

 1v

1

t
 1  Gk,qt0  t, t0  Qt0  1v

1

t
 1  Gk,qt0  t, t0

Qt0 

t0

T

 1v

1

t
 1  Gk,qt0  t, t0

  #   

(99) 

 

Taking exactly the same steps, and noticing that  

 

T
lim

t0

Tt

 1  
1  

t

 1

1  1
1


1  
     #   

 

(100) 

 

T
lim

t0

Tt

 1  
1  v

t

 1

1  1
1v

 1  v
     #   

 

(101) 

 

the respective long-term growth rates are 

 

V 
1  
1  

 1
1



  
1  

  #   

 

(102) 

 

V  1  v
1  

 1
1v


 v  
1  

  #   

 

(103) 

 

Attention growth and increasing vintage value can be combined. The corresponding BGP 

rate is 

 

V 
1  1  v

1  
 1

11v

11v1


1  1  v

1  
 1   #   

 

(104) 
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Proof of proposition 4 

Let us begin by addressing the growth of At  and then proceed to the corresponding 

cumulative value. 

The derivative with respect to time of At  is  

 

.
At  Qt0 

.
Gk,qt0  t, t0 1  Gk,qt, t0

expt

 Qt0 
wt0 , t0exptGk,qt, t0 lnGk,qt, t0  1  Gk,qt, t0

expt

 Qt0 
Gk,qt, t0wt0 , t0expt lnGk,qt, t0  1  1

expt
  #   
 

(105) 

Dividing by the expression of At , 

 

.
At
At


Qt0 

Gk,qt,t0wt0,t0expt lnGk,qt,t01 1

expt

Qt0

expt
 1  Gk,qt, t0

   Gk,qt, t0wt0 , t0expt lnGk,qt, t0  1  1

1  Gk,qt, t0

  #   

 

 

 

(106) 

For t→, 

 

.
At
At

   Gk,qt, t0  0  1  1

1  Gk,qt, t0


.
At
At

    #   
 

(107) 

 

If, alternatively, one takes At , then the respective change value is 

 

.

At Qt0  
0

t

Gk,qt, t0wt0 , t0expt lnGk,qt, t0  1  1

expt
dt   #   

 

(108) 

 

and the growth rate comes 
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.

At

At


Qt0  
0

T

Gk,qt,t0wt0,t0expt lnGk,qt,t01 1

expt
dt

Qt0  
0

t

1Gk,qt0t,t0

expt
dt

  #   

 

 

(109) 

 

For T→, 

.

At

At


Qt0  
0

T

Gk,qt,t001 1

expt
dt

Qt0  
0

T

1Gk,qt0t,t0

expt
dt



.

At

At
    #   

 

 

(110) 

 

This result is valid for   0 . Under   0 , observe that 
.

At 0  and, thus, the BGP 

encloses a result of zero growth. 
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