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Abstract 

 

This paper concerns the efficiency of number systems. Following the identification of the 

most economical conventional integer number system, from a solid criteria, an improvement 

to such system’s representation economy is proposed which combines the representation 

efficiency of positional number systems without 0 with the possibility of representing the 

number 0. A modification to base 3 without 0 makes it possible to obtain a new number 

system which, according to the identified optimization criteria, becomes the most economic 

among all integer ones. 
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Título: Sistema Numérico Ternário com Deslocamento Zero: a maneira mais económica de 

representar números 

 

Resumo 

 

Este artigo aborda a questão da eficiência de sistemas de números. Partindo da identificação 

da mais económica base inteira de números de acordo com um critério preestabelecido, 

propõe-se um melhoramento à economia de representação nessa mesma base através da 

combinação da eficiência de representação de sistemas de números posicionais sem o zero 

com a possibilidade de representar o número zero. Uma modificação à base 3 sem zero 

permite a obtenção de um novo sistema de números que, de acordo com o critério de 

optimização identificado, é o sistema de representação mais económico entre os sistemas de 

números inteiros. 

 

Palavras-Chave: Sistemas de Números Posicionais, Eficiência, Zero 
 

1 Introduction 

 

Counting systems are an indispensable tool in Computing Science. For reasons that are both 

technological and user friendliness, the performance of information processing depends 

heavily on the adopted numbering system. For example if we choose to perform arithmetics 

using only one symbol, a simple 100 + 100 addition would force us to write down that symbol 

two hundred times and look at the result to get an idea of how much that is. Such an approach 

might have been helpful in caveman times but unconceivable now for todays arithmetics.  

 

Roman numerals are an example of how to use more symbols to overcome the difficulties 

associated with the one symbol approach. Representing small numbers with such notation is 
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still used today in our clocks or book chapter numbers. However, when it comes to perform 

arithmetics, roman numerals aren’t as good as ours. Though complicated, addition is still easy 

to accomplish. However, multiplication with Roman numerals is rather tedious. In fact, a 

good exercise left out to the reader would be to try to multiply roman numerals and find out 

how good our usual Hindu-Arabic numbers are.  

 

The secret behind the arithmetics that we learn in school being so easy, lies in the emergence 

of the positional numbering systems. While roman numerals concatenate symbols in a way 

that each symbol is always worth the same number (X, for example, is always worth ten), 

positional numbering systems value each symbol contribution as a certain number according 

to its position in the digit sequence. Usually each position in the digit sequence represents the 

next power (from right to left and starting from 0) of a certain number, that number being 

called the radix of the base or numbering system. The symbol, occupying each position in the 

sequence, should therefore be multiplied by the corresponding power of the radix and all 

contributions, added together afterwards, to get the number. 

 

For example in our common decimal base (radix = 10) we write the number 132 as the 

contribution of 2*10
0
 + 3*10

1
 + 1*10

2
 (reading the number from right to left) 

 

To represent the same number in another base one can use the following algorithm [see for 

example Wikipedia contributors, November 2008] to obtain the sequence of numbers which, 

once reversed, gives the translation of the number in that base:  

 

Divide the number by the radix, and the remainder is the least-significant digit. Then divide 

again the result by the radix, and collect the remainder as the next most significant digit, 

repeating the process until the result of further division becomes zero. 

 

In base 6, for example, we would have: 

 

132/6  = 22 , remainder = 0 

22/6 = 3 , remainder = 4 

3/6 = 0 , remainder = 3 

 

Therefore in base 6 we would write 132 as 340. 

 

To write all integers up to 132, both bases need only a maximum of 3 digits. However, base 

10 uses ten symbols while base 6 needs only six. Therefore, one could say that to represent 

numbers up to 132, base 6 is more economic, or efficient, than base 10. 

 

Generally, in positional numbering systems, a balance has to be reached between the number 

of different symbols (radix) and the number of digits (width) that are required to represent a 

number. That is, when one increases, the other decreases.  

 

As extreme cases we would have the unary base – the one-symbol approach – with a 

minimum number of symbols but a maximum number of digits necessary to represent 

numbers and bases with an enormous number of symbols but very few digits necessary to 

represent a number like, for instance, the 1.000.000.000 base that would use only one digit for 

numbers up to 999.999.999. Obviously, either one would seem very unpractical, but the 

question of how we can determine whether or not we are using the most efficient numbering 

system or systems, still remains.  

http://en.wikipedia.org/wiki/Least-significant_bit
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The specific positional number representation systems, or bases, that are mostly used today 

emerged from their operationally. Base 10, for example, is quite appropriate for counting with 

the fingers, which is commonly mentioned as the reason why it became so popular.  

 

Meanwhile, the development of calculation mechanisms brought other technological 

considerations into place, and the binary (base 2) system became widely used in computers. In 

electronics, to distinguish between several states (for which it is necessary to model different 

symbols for each digit) it is much more difficult than to just distinguish between two of them. 

 

However, no matter which physiological or technological circumstances we may face 

nowadays, one may still ask which is the most efficient numbering system available.  

 

Given the fact that different numbering systems might hold different specific properties of 

their own (for example, in terms of their arithmetic) as is the case of the system that is 

introduced in this paper, if a given system is more efficient than others, then a motivation for 

our pursuit might be to wonder if nature exhibits in some of its mechanisms, characteristics 

that are similar to that system’s properties, making it the numbering system that is appropriate 

to describe what is going on in some of its domain. 

 

With this rather exploratory perspective in mind, we abstract, in this paper, from today’s 

technological restrictions behind computing circuitry and proceed with the theoretical 

exercise of selecting a mathematical measure of the efficiency of a numbering system, 

identify the most convenient known system from that measure’s point of view, and search for 

any possible improvements in such system’s efficiency. 

 

2 Efficiency of number representation systems 

 

At least two different strategies have been proposed to define some cost measure for 

numbering systems and determine which ones are the most efficient. 

 

The first focused on minimizing the sum of the total number of different entities whose names 

the human mind must remember [Phythian 1969]. They are the number of digits together with 

the number of place values. For instance, in base seven one would need names for the digits 0 

1 2 3 4 5 6 and the powers 7, 7
2
, 7

3
, …  

 

As the numbers to be represented increase, so does the number of names required to represent 

them and the more adequate number base for that purpose. For example, to represent numbers 

up to 15, in base two, one needs only 5 names, while, in base seven, 8 names would be 

necessary. However, to represent numbers up to 10000, in base two, one needs 15 names 

while, in base seven, 11 names would be enough. It turns up that the most economical base to 

represent numbers up to a certain value depends on that range of values, increasing with it in a 

way that can be calculated [Phythian 1969]. 

 

The variation of efficiency of each base accordingly to the numbers to be represented, is a 

point that goes against the strategy of using the sum of the number of digits together with the 

number of place values as the cost measure of numbering systems. In fact, since changing 

between numbering systems according to the magnitude of the numbers to be represented is 

not viable, one looks for a stable solution, no matter how big are the numbers to be 

represented. 
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This opens up room for the second strategy of minimizing, not the sum, but the product 

between the number of different symbols used and the number of digits required to represent 

a number. This way, the efficiency measure of each system would be directly proportional to 

any of these two quantities. Such strategy to obtain the most economical base has been 

reported in the literature [Hayes 2001]. Treating the two variables as continuous, it turns out 

that, no matter how big the number to be represented, the most efficient base is e [Hayes 

2001]. 

 

 
Source: [Hayes 2001] 

 
Figure 1. Most economical radix for a numbering system is e (about 2.718) when economy is 

measured as the product of the radix (base or number of symbols) and the width, or number of 

digits, needed to express a given range of values. Here both the radix and the width are treated 

as continuous variables. 

 

Building on the integer value that is closest to e, base 3 (using 0,1 and 2) is almost always, 

according to this strategy, the most economical integer base, as represented in Figure 2. 

  

 
Source: [Hayes 2001] 

Figure 2. The most economical integer radix is almost always 3, the integer closest to e. If the 

capacity of a numbering system is r
w
, and the cost of a representation is rw, then r=3 is the best 

integer radix for all but a finite set of capacities. Specifically, ternary is inferior to binary only 

for 8,487 values of r
w
; ternary is superior for infinitely many values. 

 

 

3  Number representation systems without zero 
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In spite of the fact that normal ternary base has apparently emerged as the most economical 

integer base, according to the selected efficiency criteria, there is a better performing number 

representation system. Even with the shortcoming of not representing zero, a modification of 

base 3 from using 0,1 and 2 to using 1, 2, and 3 instead, would lead to an increase of 

efficiency. Table 1 shows the representation of the first 40 non-negative integers in those 

bases. It can be noted that one digit is saved in almost half of the numbers. 
 

Table 1 – The first 40 non-negative integers in base 10, base 3 (0,1,2) and base 3 (1,2,3) 

 

Base 10 Base 3 

(0,1,2) 

Base 3 

(1,2,3) 

 Base 10 Base 3 

(0,1,2) 

Base 3 (1,2,3) 

0 0   20 202 132 

1 1 1  21 210 133 

2 2 2  22 211 211 

3 10 3  23 212 212 

4 11 11  24 220 213 

5 12 12  25 221 221 

6 20 13  26 222 222 

7 21 21  27 1000 223 

8 22 22  28 1001 231 

9 100 23  29 1002 232 

10 101 31  30 1010 233 

11 102 32  31 1011 311 

12 110 33  32 1012 312 

13 111 111  33 1020 313 

14 112 112  34 1021 321 

15 120 113  35 1022 322 

16 121 121  36 1100 323 

17 122 122  37 1101 331 

18 200 123  38 1102 332 

19 201 131  39 1110 333 

 

 

Number representation systems without zero have already been reported in the literature (see 

for example [Foster 1947], and [Forslund 1995]). The advantage of such systems needing, 

oftenly, less digits to represent a number has been mentioned [Forslund 1995]. However, one 

important issue remained to be solved: the representation of 0. In fact, as its historical uses 

have shown, the number zero is important not only as an empty place indicator in our place-

value numbering system, but also as a number itself [O’Connor 2000]. In fact, for a number 

system to be considered as perfect, one of the criteria is that no number should go 

unrepresented [Bhattacharjee, 1995]. 

 

Number representation systems without zero have also been called Bijective Numeration 

Systems or k-adic notation systems. Bijective base-k numeration represents a non-negative 

integer by using a string of digits from the set {1, 2, ..., k}(k ≥ 1) to encode the integer's 

expansion in powers of k [Wikipedia contributors, September 2008]. The fact that every non-

negative integer has a unique representation in such system - bijective base-k (k ≥ 1) is known 

[Wikipedia contributors, 2008] and several particular cases (in terms of k’s domain) have 

been previously mentioned in the literature ([Böhm 1964], [Knuth 1969], [Salomaa 1973] and 

[Smullyan 1961] - cited in [Wikipedia contributors, 2008]). 
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Bijective Numeration Systems represent the integer zero by using the empty string, but one 

needs then one extra symbol to allow for such representation, which clearly reduces its 

efficiency.  

 

Therefore, the question remains of how to obtain the representation economy gains of a 

positional number system without zero, while maintaining the possibility of representing 0 in 

such system.  

 

4  A new number representation system 

 

To present the new number representation system one considers the case of base 3, since it is 

the purpose of this paper to identify the most economical number representation system 

available, according to the criteria identified in the literature review. The idea, however, is 

obviously extensible to other bases. 

 

For the purpose of illustrating the representation of the first 40 non-negative integers in the 

Zero Displacement Ternary Number System, table 2 shows how it compares with the other 

representations. In table 2, among the bases that allow 0 to be represented, Zero Displacement 

Ternary Number System (ZDTNS) is the most economic one. 

 
Table 2 – The first 40 non-negative integers in base 10, base 3 (0,1,2), base 3 (1,2,3) and ZDTNS 

 

Base 

10 

Base 3  

(0,1,2) 

Base 3  

(1,2,3) 
ZDTNS 

 

 Base 

 10 

Base 3 

 (0,1,2) 

Base 3  

(1,2,3) 
ZDTNS 

 

0 0  1  20 202 132 133 

1 1 1 2  21 210 133 211 

2 2 2 3  22 211 211 212 

3 10 3 11  23 212 212 213 

4 11 11 12  24 220 213 221 

5 12 12 13  25 221 221 222 

6 20 13 21  26 222 222 223 

7 21 21 22  27 1000 223 231 

8 22 22 23  28 1001 231 232 

9 100 23 31  29 1002 232 233 

10 101 31 32  30 1010 233 311 

11 102 32 33  31 1011 311 312 

12 110 33 111  32 1012 312 313 

13 111 111 112  33 1020 313 321 

14 112 112 113  34 1021 321 322 

15 120 113 121  35 1022 322 323 

16 121 121 122  36 1100 323 331 

17 122 122 123  37 1101 331 332 

18 200 123 131  38 1102 332 333 

19 201 131 132  39 1110 333 1111 

 

Among all the numbers that are smaller than n, there are k-1 numbers (with k = number of 

digits necessary to represent n in base 3 with 1,2,3) for which the representation in ZDTNS 

needs one more digit than in Base 3 (1,2,3) – for example in the first 40 non-negative integers 

there are 3 such numbers (3, 33 and 333).  
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Except for this, and while allowing 0 to be represented, the displacement number system 

basically holds the same efficiency as base 3 with 1,2,3 (Forslund system). In fact, the number 

of numbers with n digits that can be written in the Zero Displacement Ternary Number 

System is the same as in base 3 (1,2,3), as table 3 illustrates.  

  

 
Table 3 – Representation of how many numbers with n digits can be written in different number 

systems for the first 40 non-negative integers 

 

n (number of digits) Number of numbers that can be written 

Base 3 (1,2,3) 

or Forslund System 

Zero Displacement Ternary 

Number System 

1 3 3 

2 9 9 

3 27 27 

 

 

The translation mechanism from and to Zero Displacement Ternary Number System is quite 

simple. Consider for example that: a) we want to write a decimal base number n in ZDTNS; 

and b) we want to translate a ZDTNS number j to decimal base: 

 

a) To represent an integer number n (positive, negative or zero) in the Zero Displacement 

Ternary Number System (ZDTNS) one proceeds as follows:  

 

1. If n is different from 0 Then Add 
n

n
 to the number n  

      Else Add 1 to the number n 

 

2. Represent the value previously computed in base 3 without zero (1,2,3). 

 

 

b) To read number j from Zero Displacement Ternary Number System one proceeds as 

follows:  

1. Take number j in base 3 without zero (1, 2, 3), subtract 
j

j
 from it and then translate 

the result from that base to base 10. 

 

 

In Zero Displacement Ternary Number System (ZDTNS), the arithmetic is different from 

what is usual in conventional numbering systems. As a separate issue in itself, its treatment is 

to be focused in another work 

 

In future developments, besides its basic arithmetic, several other aspects of this numbering 

system are to be detailed in future work such as the system formalization in axiomatic terms, 

analysis of its properties, generalization to fractional numbers, possible applications, etc. 

 

 

 

5 Conclusion 
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Following the identification of an appropriate mathematical measure of the efficiency of a 

number system - that consists of the product between the number of different symbols and the 

number of digits used to represent a number – we have verified how base three is reported as 

the most economic conventional number system from that measure’s point of view.  

 

The search for possible improvements in base three efficiency led us to the consideration of 

number systems without zero, which in fact allow gains in economy but have the 

disadvantage of not representing number zero.  

 

As an original contribution to number systems in general and to the goal of identifying the 

most efficient number representation system in particular, a solution is proposed to the 

problem of zero representation in number systems without zero. As a result, the Zero 

Displacement concept is proposed and its translation mechanism between bases introduced 

for the Zero Displacement Ternary Number System, which was identified as the most 

economical number representation system, strictly from the point of view of number 

representation. 
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