Teoria e Prática em Sistemas de Recomendação
DOI:
https://doi.org/10.34627/rcc.v15i0.264Palavras-chave:
sistemas de recomendação, filtragem de informação, recomendação com DNN, recomendação sequencial, recomendação baseada em sessãoResumo
Nas últimas décadas a utilização da inteligência artificial tem sido frequente no desenvolvimento de aplicações computacionais. Mais recentemente a aprendizagem automática, especialmente pelo uso da aprendizagem profunda (deep learning), tem impulsionado o crescimento e ampliado o desenvolvimento de sistemas inteligentes para diferentes domínios. No cenário atual de crescimento tecnológico estão a surgir com maior frequência os sistemas de recomendação (recommender systems) com diferentes técnicas para a filtragem de informações em grandes bases de dados. Um desafio é prover a recomendação adaptativa para mitigar a sobrecarga de informações em ambientes on-line. Este artigo revisa trabalhos anteriores e aborda alguns dos aspectos teórico-conceptuais e teórico-práticos que constituem os sistemas de recomendação, caracterizando o emprego de redes neuronais profundas (Deep Neural Network – DNN) para prover a recomendação sequencial apoiada pela recomendação baseada em sessão.
